John Hopkins Graduate Student Housing

Final Report

929 North Wolfe Street Baltimore, Maryland Brad Oliver – Structural Advisor: Professor Memari 04/04/2012

Final Report

John Hopkins Graduate Student Housing Baltimore, Maryland

Brad Oliver - Structural

Project Overview

- Size 276,000 sq ft
- Construction Aug '10 June '12
 Cost \$44 million (hard costs)

- Contract Single Prime
 Owner Education Realty Trust
- Architect Marks, Thomas Architects
 Contractor Clark Construction
- Mechanical BKM

Mechanical

- 5 Air Handling units with an average flow of 4500 cfm
- VAV boxes with electric reheat coils located throughout the building
- Cooling is provided by two 350 ton water cooling towers

Architecture -

- Primarily residential use providing 929 rooms for John Hopkins Graduate students
- A 9 and 20 story tower composed of a brick and glass facade with metal panels to provide a modern look
- Accessible green roof terrace on the lower tower

Structure -

- Typical floor framing is an 8" thick two way post-tensioned slab system
- Deep foundation system consisting of Caissons ranging from 3 to 4.5 feet in diameter
- Ordinary reinforced concrete shear walls used to transfer lateral loads down to the foundation

Electrical -

- 2400 Amp 3 phase, 4 wire from utility company for normal 208Y/120V and 480Y/277V systems
- First 8 floors (208Y/120V systems) are serviced separately than the remaining primarily through 1000 amp bus ducts.
- 4000 KW 480Y/277V 3 phase, 4 wire generator for emergency systems on 1st floor

Brad Oliver's CPEP website: http://www.engr.psu.edu/ae/thesis/portfolios/2012/BRO5010/index.html

Table of Contents

Executive Summary5
Acknowledgements
Introduction –
Structural Systems –9
Foundations:9
Floor Framing:
Lateral System:12
Building Code Summary –13
Material Strength Summary –13
Load Calculations –
Dead Loads:14
Live Loads:14
Problem Statement –
Problem Solution –
Structural Depth:16
Construction Management:17
Architecture:
Structural Depth, Baltimore Location –
Gravity System:
Eccentric Braced Frame Background:21
Load Combinations:
Design Process:
Structural Depth, San Francisco Location
Load Combinations:
Results:
Construction Management Breadth –
Architecture –
Conclusion –
Appendix A – Existing Drawings

Appendix B – Composite Steel Beams Calculations	54
Appendix C – Preliminary Column Design	60
Appendix D – EBF Checks at Baltimore	64
Appendix E – New Seismic Criteria	69
Appendix F – EBF Checks at San Francisco	70
Appendix G – Construction Management Calculations	72
Appendix H – References	75

Executive Summary -

Johns Hopkins Graduate Student Housing is a 20 story apartment complex located in Baltimore Maryland. The first floor is comprised of a three commercial spaces while the rest of the building is residential. The existing structure is composed of an 8 inch thick post-tensioned concrete slab. Lateral loads are resisted through one foot thick shear walls extending the whole height of the building.

In order to make a problem within the structure, a move to San Francisco was proposed. Moving to a high seismic region would cause the tall shear walls to no longer be code compliant. The proposed solution for this project then was to design a dual system of eccentric braced frames with moment connections capable of resisting at least 25% of the seismic load. These frames were designed according to AISC Seismic Provisions. At the Baltimore location, controlling wind deflections was the greatest challenge and caused the design to incorporate several frames.

In order to reduce seismic weight and prepare the structure for a seismic region, the gravity system was redesigned utilizing composite steel beams. Typical sizes for the beams were found to be W12X19 when sized by hand or Ram Structural Systems. A goal for designing the gravity system was to minimize the structural depth just as the original structure had done. This was achieved through small tributary areas and the composite system.

One the structure was designed at the current location, the move took place and was analyzed once again. Many of the structural elements, particularly columns, needed to be upsized by 10-20 pounds per foot. Unfortunately, the building was also found to once again be torsionally irregular despite the addition of several frames.

In order to compare and see if the steel system was viable, a cost a schedule analysis was done comparing the two structures. It was found that the steel system resulted in an expedited schedule and cost savings, but further investigation of the connections would need to be done to ensure accuracy. An architecture breadth was also performed. Minimizing the architectural impact was a goal throughout the design process but not all conflicts could be avoided. The lounge and fitness room were the locations studied and rendered for this project.

Acknowledgements -

I would like to thank everyone who made my thesis possible and contributed to a successful project including:

Hope Furrer Associates for providing me with a building and answering questions I had along the way. I would like to specifically thank

Hope Furrer

Stephanie Slocum

Education Realty Trust for giving me permission to use their building and providing me with a hard copy of the drawings and images. I would like to specifically thank

Jeffrey Resetco

Marks, Thomas Architects for giving me permission to use their building and proving me with an electronic copy of the drawings, as well as renderings. I would like to specifically thank

Michael Blake

Justin Hollier for providing me with the construction schedule and cost values to use for comparison.

The entire Architectural Engineering department at Penn State for the providing me with the resources and education necessary to complete thesis. I would like to specifically thank

Dr. Ali Memari for being my mentor throughout the year.

Family and friends for their continuous support and advice throughout this project.

Introduction –

Located just outside the heart of Baltimore, two blocks from John Hopkins campus, is the site for the new John Hopkins Graduate Student Housing. This housing project is being constructed in the science and technology park of John Hopkins. A developing "neighborhood", the science and technology park is over 277,000 sq. ft. which is planned to host at least five more buildings dedicated to research for John Hopkins University. The site is also directly across from a 3 acre

green space. This location is ideal because it places graduate students within walking distance of the schools hospitals, shopping, dining and relaxing.

John Hopkins Graduate Student Housing project is a new building constructed with brick and glass facades for a modern look. Upon completion, the building's main

wall function is predominantly for graduate residential use, providing 929 bedrooms over 20 floors. There are efficiencies, 1, 2, and 4 bedroom apartments available. Other features include a fitness room and rooftop terrace. A secondary function of the building is three separate commercial spaces located on the first floor. Retail spaces provide a mixed use floor, creating a welcoming environment and bringing in additional revenue. At the 10th floor, the typical floor size decreases, creating a low roof and a tower for the remaining ten floors. Glass curtain walls on two corners of the building also begin on the 10th floor and extend to the upper roof.

The façade of John Hopkins GSH is composed mainly of red brick and tempered glass with metal cladding. Large storefront windows will be located on the first floor and approximately 6' x 6' windows in the apartments. The curtain wall is to be constructed of glass and metal cladding that can withstand wind loads without damage. There is a mechanical shading system in the windows to assist in the LEED silver certification.

John Hopkins GSH is striving to achieve LEED silver certification. Most of the points accumulated to achieve this level come from the sustainable sites category. A total of 20/26 points were picked up in this category due to a number of achievements such as; community connectivity, public transportation access, and storm water design and quality control. Indoor air quality is the next largest category where the building picks up an additional 11 points

for the use of low emitting materials throughout

green area across the street for the use of low clinting matchais throughout construction. Several miscellaneous points are picked up for using local materials and recycling efforts as well. Shading mechanisms are also implemented throughout the design as well as an accessible green roof.

There are three different types of roofs on this project. Above the concrete slab on the green roof is a hot rubberized waterproofing followed by polystyrene insulation, a composite sheet drying system, and finally the shrubbery. The sections of roof containing pavers will be constructed using the same waterproofing, a separation sheet, the insulation and finally pavers placed on a shim system. The remaining portions of the roof will be constructed using a TPO membrane system.

Structural Systems –

Foundations:

A geotechnical report was created based on 7 soil test borings drilled from 80' to 115' deep. Four soil types were found during these tests: man placed fill from previous construction 7-13 feet deep, Potomac group deposits of silty sands at 40-75 feet, and competent bedrock at 80-105 feet. Soil tests showed a maximum unconfined compressive strength of 12.37 ksi. The expected compression loads from the structure were 2400k and 1100k for the 20 and 9 floor towers, respectively. The foundation system will also have to support an expected uplift and shear force, respectively, of 1400k per column and 180k per column. Based on pre-existing soils and heavy axial loads it was determined that a shallow foundation system was neither suitable nor economical.

In order to reach the competent bedrock, John Hopkins GSH sits on deep caissons 71-91 feet deep. Caissons range in 36-54" in diameter and are composed of 4000psi concrete. Grade

Figure 3 - a detail section of a caisson and column

beams, 4000psi, sit on top of the caissons followed by the slab on grade. Slab on grade consists of 3500 psi reinforced with W2.9XW2.9 and rests on 6" of granular fill compacted to at least 95% of maximum dry density based on standard proctor.

According to the geotechnical report, the water table is approximately 10 feet below the first floor elevation, therefore a sub drainage system was not necessary.

Floor Framing:

Dead and live loads are supported in John Hopkins GSH through a 2-way post-tensioned slab. The slab is typically 8" thick normal weight 5000 psi concrete reinforced with #4 bars at 24" on center along the bottom in both directions. The tendons are low-relaxation composed of a 7-wire strand according to ASTM A-416. Effective post tensioning forces vary throughout the floor, but the interior bands are typically 240k and 260k. This system is typical for every floor except for the 9th which supports a green roof and accessible terrace. Higher loads on this floor require a 10" thick 2 way post tensioned slab reaching a maximum effective strength of 415k. The bottom layer of reinforcing in this area is also increased to #5 bars spaced every 18". One bay on the 9th floor (grid lines 7-8) is constructed with a 10" cast in place slab. Plans of this floor can be found in appendix E.

Mechanical penthouses exist on the 9th and 20th roof constructed with a steel moment frame. Typical sizes for the 9th floor penthouse are W10's and W12's with 1.5" 20 gage "B" metal deck. As for the 20th floor penthouse, the typical beam size is W16x26. Equipment will be supported on concrete pads typically 4" thick. Two air handling units and cooling towers on the roof will require 6" pads.

Figure 4 - Typical floor plan of upper tower

The loads will flow through the slab and reinforcement to the columns eventually making their way down to the foundation. To tie the slab and framing system into the columns, two tendons pass through the columns in each direction. To further tie the systems together, bottom bars have hooked bars at discontinuous edges. Dovetail inserts are installed every 2' on center to tie the brick façade in with the superstructure. Columns are typically 30"x20" and composed of 4ksi strength in the northern tower (9 floors), while columns in the southern tower vary from 8ksi at the bottom, and 4 ksi at the top.

Figure 5- Typical detail for post tensioned tendon profile

Lateral System:

John Hopkins GSH is supported laterally through a cast in place reinforced concrete shear wall system. All of the shear walls are 12" thick and located throughout the building and around stairwells and elevator shafts. Shear walls in the 9 floor tower are poured with 4000psi strength concrete while shear walls in the 20 floor tower vary in three locations. From the foundation to 7th floor, 8ksi concrete is used, 6ksi from 7th to below 14th floor, and 4ksi for walls above the 14th

floor. The shear walls are tied into the foundation system through bent vertical bars 1' deep into the grade beam as shown in figure 6. Shear walls are shown below in the figure with N-S walls highlighted in blue and E-W walls red. Walls in the center of the building will support lateral stresses directly, while those on the end support the torsion effects caused by eccentric loads.

Figure 7 - Shear wall layout

Building Code Summary –

	John Hopkins GSH was designed to comply with:	My Thesis analysis/design will be based on:
General Building Code	IBC 2006	IBC 2006
Lateral Analysis	ASCE7	ASCE7-05
Concrete Specifications	ACI 301, 318, 315	ACI 318-08
Steel Specifications	AISC and AWS D1.1	AISC 2006
Masonry Specifications	ACI 530.1/ASCE 6	ACI 530.1-08/ASCE 6-08

Table 1- Building Code Comparison

Material Strength Summary –

Material Strengths								
Concrete								
Material	Weight (lbs/ft ³)	Strength (psi)						
Footings	145	4000						
Pile Caps	145	4000						
Caissons	145	4000						
Grade Beams	145	4000						
Slab-on-grade	145	3500						
Slabs/beams	145	5000						
Slab on metal deck	115	3500						
Columns	145	Vary-see schedule						
Shearwalls	145	Vary-see schedule						
Steel								
Shape	Grade	Yield Strength (ksi)						
W Shapes	A992	50						
S, M and HP Shapes	A36	36						
HSS	A500-GR.B	42						
Channels, Tees, Angles, Bars, Plates	A36	36						
Reinforcing Steel	GR. 60	60						

 Table 2 - Material Strength Summary

Load Calculations –

Dead Loads:

The dead loads calculated have confirmed the dead loads that were provided in the loading schedule as seen in figure 8. It appears that the designer used ASD in their analysis because the total load does not have any factors applied to it. The analysis in this tech report will be LRFD which typically results in a more aggressive design.

LOGATION	LOCATION TYPELL TH FLOOR HER ROOT PORTIONS		EAL TH FLOOR HOR ROOF POITHOUS		EXTERIOR MEGNAMEAL AREAS CITIN + 2000	TH FLA
CONCRETE GLAB	300	125	1925	- 18 M	100-115	125
HETAL DECK		1. 20. 3		2		
K/E/S/L	6		. 0		8	8
NEMORANE	1. e.	2. 20. 3	1 - 8 - 5	- 3 1 - 8	- 19e - 1	
ROOTING		1 × 1	((R)) (A)	4.0	1991	
RELATION	((#)	10 M 1	1.00.5	4 8	100	27
PARTITION GLME LOASD	B	2.40.3	(14) J	- 94 - 13	1.00	
SALEN ROOP	1.14	30	30	- 04 - 13	- 200 million	
4" TOTTING SLAD		50	50	18 23	50	50
TOTAL SEAD LOAD	105	253	201	23	26-07	270
INE LOAD	10	100	30	30	10	30
TOTAL LOAD	163	313	236	55	306-321	325
NGIEL: 1. KL LIVE LOADS ARE 2. HO LIVE LOAD FEDU 3. TOTAL DEAD LOADS 4. LOADS H SCHEDLE PROVISION FOR THE HEOLOGY TO THE AT HEOLOGY TO THE AT	IN ACCORD STON HAS D SO NOT IN DO NOT IN SUPPORT OF PEOPED IN TENTON OF	ANCE WITH BITS REEN TAKEN BI LIDE BECOM THESE DRISS DRANEAL UNIT THE STRUCTU	CHATICHA, D TO ACCOUNT. OF STEEL OF OF SCOP TO FUVE BEES T ONCE, WEGHT	ULING GODE PERMIT YAN PERMIT YAN NGT OF AN T	2006 EDITION UNITS THE KOMELAL BASA NO SHALL BE	

Figure 8 - Summary of loads used by designer

Live Loads:

It seems John Hopkins used loads very similar to the ASCE7-05 standards. Exterior mechanical loads were not specified in the standard, but I am assuming the equipment can cause significant loads while operating. The 30psf on non-assembly roof areas is most likely a judgment call to account for the maintenance that would be required for a green roof. Although not specified on the table, the 100psf required in the corridor and stairwells are most likely balanced by the large

banded post tensioned tendons running parallel to the corridor and around the stairwells.

Area	Designed for – (psf)	ASCE7-05 (psf)
Typical Floor	55 (includes partitions)	40 (residential) + 15 (partitions)
Corridors	N/A	100
Stairs	N/A	100
Assembly	N/A	100
First story retail	N/A	100
Roof used for garden/assembly	100	100
Exterior Mechanical areas	150	N/A
High Roof	30	N/A
Penthouse Roof	30	N/A
Planter Areas	30	N/A

Table 3 - Live Load Comparison

Problem Statement –

After performing a gravity and lateral analysis, the Johns Hopkins Graduate Student Housing project was found to be efficient and sufficient. In order to create problems in the structure and provide a learned experience in seismic area, a scenario has been proposed where the project site has been changed from Baltimore to San Francisco, California. The site change results in the structure being classified in seismic design category D.

Once the building location has been changed, the first problem occurs in the lateral system. ASCE 7-05 does not permit ordinary reinforced shear walls in SDC D; therefore, a dual system with moment frames capable of resisting at least 25% of the seismic loads will need to be designed. Lateral loads will be resisted primarily through eccentrically braced frames which need to be designed.

To reduce the seismic weight and loads on the building, the post-tensioned floor system will also need to be redesigned using a composite floor system. Using a steel frame will also provide more ductility to the structure as well.

The original design goals such as cost, minimal floor-floor depth, and appealing architecture, must also be of importance for the redesign. The project was found to be torsionally sensitive in Tech Report 3, so an additional goal for this redesign is to minimize torsional effects.

Problem Solution –

Structural Depth:

To solve the problems associated with moving the building to a seismic region, a steel framing system needs to be designed to withstand the gravity loads as defined by ASCE7-05. The steel structure will be designed to be as economical as possible while keeping the floor-to-floor heights at a minimum just like Tech Report 2. To minimize the structural depth, a composite system will be used to take advantage of concrete's strong compression properties. IBC 2006 mandates a 2-hour fire rating; therefore, the deck will also need to be designed accordingly. The gravity system also needs to satisfy strength and serviceability requirements such as L/240 for total load and L/360 for live load.

Once the gravity system has been designed, a lateral system needs to be designed to resist wind and seismic loads. Eccentrically braced frames will be the main lateral force resisting system. In order to reduce the torsional sensitivity of the building, braced and moment frames will be placed near the core of the building as well as the exterior. The frames also need to satisfy strength and serviceability requirements. To maximize the ductility in the system and the architectural flexibility, an eccentric braced frame, and moment frames will be designed. For eccentric frames the link element, the beam between braces, is the critical element because it will deform the most. Deformation will provide ductility for the system and absorb seismic loads and reduce the chances of a sudden failure. The lateral system will need to comply with ASCE standards regarding drift limits according to table 12.12-1.

Construction Management:

Changing the main construction method will significantly impact the schedule and cost. Steel erection typically results in quicker schedule than concrete because there is no need for formwork construction and tear down which would save the owner money. An expedited schedule would result in some cost savings for the owner also. Steel connections however would increase the cost of the structure, and if the building height isn't kept to a minimum, the façade will cost more money as well.

Comparisons will be made with regards to cost and schedule analysis at the current location between concrete and steel, and then again once the site is moved to a seismic region. The seismic region will result in more detailed connections, larger members, and possibly more members.

Architecture:

Altering the lateral system from shear walls to a steel braced frame will change numerous architectural features. Columns will need to be moved so they are centered on the grid lines, and added in several locations to limit the span of beams and girders. A steel system will make the most impact in the braced frames. An additional goal for the structural redesign will be to reduce torsion in the building, requiring braced frames in more locations than the current shear walls. These additional frames will cause functional changes to apartments near the outer walls and some of the public spaces such as fitness room and lounge.

Apartments and commercial spaces affected will be inspected to see if the frame can still be architecturally pleasing. If not, then the space will be redesigned to implement the frame while maintaining a functional and aesthetically pleasing space.

Structural Depth, Baltimore Location –

Gravity System:

The existing concrete system didn't have columns at every gridline, and sometimes were not centered on the gridlines. In order to make a more regular bay and layout, columns were added in some locations, or moved one to two feet, to create a geometrically clean and efficient layout. Moving the interior columns one foot towards the center of the building created 3 bays in the short direction of 24 feet on the edges, and 16 feet in the center. The beams were then designed to be spaced at 8' on center in order to minimize the tributary area to maintain low floor-floor heights. Figure 9 shows where new columns were added. The new columns were located where a wall used to be so that the architectural impact could be kept to a minimum. For analysis purposes, existing columns were moved to the nearest gridline and centered.

Figure 9 - Steel Column Locations

Composite steel beams were used in order to utilize the compression properties of concrete to resist part of the load. Using the concrete as a part of the gravity system would also help limit the depth of the structural system, ultimately reducing the overall height of the building. A composite beam system also helps maintain an economical design. 2 VLI composite deck with a 2 inch topping was chosen to be the floor system to maintain a two-hour fire rating in order to comply with building codes.

To start the design, beams were designed based on an iterative process to control deflections and meet strength requirements. With typical spans of 25 feet, the first step of the design process was to find the minimum moment of inertia required to meet serviceability requirements. Trial beam and stud designs were picked and compared with one another to determine which one was most economical before calculating the various strength requirements. Typical bays on the interior and exterior sides of the building were designed by hand and can be found in Appendix B.

In order to expedite the design process, the grids, columns, and loads were put into RAM Structural System. Before running the design process however, some assumptions needed to be made. Defaults were adjusted so the beams would be designed to include no camber, and to minimize the structural depth. Minimizing the structural depth was an original design goal so that the overall height of the building will be approximately the same and won't increase the cost of the façade.

After running the design process, typical sizes of beams were found to be 12X16. A full plan view of the short and tall tower can be seen below in figures 10 and 11 respectively. These designs were compared to the ones designed by Ram and were found to be very close. Ram was slightly more efficient because it's able to compare many more combinations of beams and studs quickly to determine the most economical pairing.

	<u> </u>	W12x14 (12)		W10x12 (10)		W8x10 (8)		VV8x10 (8)		W8x10 (8)		W8x10 (8)	
	(2)		(9)				(9)		(2)		(9)		
ą	07%	W12x16 (24)	(35	VV12x14 (10)		W8×10 (8)	26	VV8x10 (8)	×26	W8x10 (8)	26	VV8x10 (8)	
2014 P.	(3)	W12x16 (24)	W12	W12x14 (10)		W8x10 (8)	W12>	W8x10 (8)	W12>	W8x10 (8)	W125	W8x10 (8)	
	(2)		(9)				(2)		(2)		(2)		
В.				W12x14 (10)		W8x10 (8)		W8x10 (8)		W8x10 (8)		W8x10 (8)	
C	[0] 71	W12×19 (16)	4 (14)	W12x14 (10)	2 (16)	W8x10 (8)	12 (8)	W8x10 (8)	12 (8)	W8x10 (8)	12 (8)	W8x10 (8)	0 (6)
			W12x1		W10x1		W10x		W10x		W10x		WBX1
E)		W12x19 (12)		W12x14 (10)		W8x10 (8)		VV8x10 (8)		W8x10 (8)			
	(2)	14/4-2-46 (24)	(9)	14/10-14 (10)		X40-10 (D)	(5)	14/9-10/91	(5)	140-40 (0)	(2)	MO-40 (0)	
a Ma	(8	VV12X10(24)	3)	VV12×14 (10)		VV8X10 (6)	3)	¥¥6X IU (6)	5×26 3)	vva×10 (a)	3)	VV8×10 (8)	2×14
- F141		W12×16 (24)	0	W12×14 (10)		W8×10 (8)	W12	VV8×10 (8)	W12	VV8×10 (8)	W12	W8×10 (8)	W12
	(2)		(9)				(5)		(2)		(2)		6
(E.9):-	<u> </u>	W12x14 (12)	<u> </u>	W10x12 (10)		W8x10 (8)		W8x10 (8)		W8x10 (8)		W8x10 (8)	-1
- Ce	1.)												

Figure 10 - Beam Design of Short Tower

Preliminary designs of columns were also performed by hand and can be found in Appendix C. The factored ultimate load was compared to the reduced strength factor. Interaction equations were not done in the interest of time, but the second order effects were included in the computer design, and were close to the ones designed by hand. Column splices were included at every other floor for constructability purposes. OSHA won't allow work to be done more than two floors above grade or metal deck without fall protection, so columns will be erected and spliced as drawn in figure 12. This will also allow for the design to be economical. Once the initial gravity model was complete, the final height of the building was 207 feet, only 3 feet higher than the original.

Figure 12 -Column Splice Locations

Top

Eccentric Braced Frame Background:

Once the gravity system was designed, the lateral system was the next step in the design process. Eccentric braced frames are braces that do not stretch from column to column, but instead connect at the beam and have an eccentricity known as e. This is illustrated below in figure 13.

Figure 13 - Courtesy of http://www.fgg.uni-lj.si/kmk/esdep/master/wg01b/l0720.htm

For this particular project, a layout similar to "b" in figure 13 will be used in order to reduce the stresses on the connections. Layouts "a" and "c" put a lot of stress on the moment connection in those regions because of the high rotation at that location. In eccentric braced frames, the beam segment between the two braces is known as the link element and will be the most critical piece in frame design. Ideally, as lateral loads are applied to the structure, the brace will apply shear and axial loads on the link element beyond its elastic capacity. It will deform and dissipate energy which is an advantageous feature in a high-seismic region such as San Francisco.

Eccentric braced frames have several advantages when comparing them to typical chevron or moment frames. Chevron frames are very stiff, making deflections easier to control, but they inhibit the functionality of the architecture. Moment frames allow for the most flexibility of spaces, but are often too ductile for many situations. Due to the height of John Hopkins Graduate Student Housing, and the need for a flexible floor plan, eccentric braced frames were selected as the best option. The first design aspect of the braced frames is the link length. If the link is longer, the frame is less stiff and could be controlled by a combination of shear and flexure. The more desirable option is to have a shorter link length to increase stiffness, and have the design be controlled by shear. A graph representing the relative stiffness of a frame and link length can be found in figure 14. With a tall building, such as the John Hopkins Graduate Student housing, where serviceability will be an issue, especially with wind, the shorter link is an advantageous design.

Figure 15 shows an idealized deformed shape of the eccentric braced frame. The link element is designed to deform greatly and dissipate most of the lateral loads. The rest of the beam is designed to remain elastic. Columns are designed to have a larger plastic moment capacity than the beam, known as strong columns weak beam design, to ensure that a pancake failure won't occur.

Figure 15 - EBF Deformed Shape

Load Combinations:

Before running the program, it was expected to see wind control the design because most of the concrete weight was removed, causing a decrease in seismic loads. The East-West direction was also predicted to be the most critical direction because it is a large, tall rectangular face that would collect a lot of force. After running the analysis, the predictions were confirmed that wind controlled in drift and strength in the East-West direction. Unlike the original structure however, the fourth wind load case including 15% eccentricity did not control. 100% of the wind load applied in the East-West direction controlled, which is an indicator that the torsional irregularity was removed. This will be discussed and calculated later with actual drift values.

Due to keeping the height of the new structure within three feet of the original, the wind loads were the same as the previous concrete design. The wind loads in the East-West direction are summarized below in tables 4 and 5.

Criteri	a	E-W Direction						
Tall Tower		Floor	Height (ft)	Kz	qz	p (windward) (psf)	p(leeward) (psf)	
Gf	0.87	Penthouse	208.42	1.21	21.327	18.68	-13.12	
C _p (Windward)	0.8	Roof	194.25	1.19	20.974	18.37	-13.12	
C _p (Leeward)	-0.5	20	183.9	1.17	20.622	18.06	-13.12	
Gcpi	0.18	19	174.6	1.15	20.269	17.76	-13.12	
Velocity (MPH)	90	18	165.3	1.13	19.917	17.45	-13.12	
Lower Tower		17	155.9	1.12	19.741	17.29	-13.12	
Gf	0.85	16	146.6	1.1	19.388	16.98	-13.12	
C _p (Windward)	0.8	15	137.2	1.09	19.212	16.83	-13.12	
C _p (Leeward)	-0.5	14	127.9	1.07	18.859	16.52	-13.12	
Gcpi	0.18	13	118.6	1.04	18.331	16.06	-13.12	
Velocity (MPH)	90	12	109.3	1	17.626	15.44	-13.12	
		11	99.9	0.99	17.449	15.29	-13.12	
		10	90.6	0.96	16.921	14.82	-13.12	
		9	81.3	0.93	16.392	14.10	-9.92	
		8	71	0.89	15.687	13.49	-9.92	
		7	61.7	0.85	14.982	12.88	-9.92	
		6	52.3	0.81	14.277	12.28	-9.92	
		5	43	0.76	13.395	11.52	-9.92	
		4	33.7	0.7	12.338	10.61	-9.92	
		3	24.3	0.7	12.338	10.61	-9.92	
		2	15	0.7	12.338	10.61	-9.92	
		1	1	0.7	12.338	10.61	-9.92	

Table 4 - Wind Load Calculations

E-W Direction Tall Tower										
Floor	Height (ft)	Height Below (ft)	Heigh Above (ft)	Trib Area (ft2)	Story Force (K)					
Penthouse	208.42	15.2	0	1236.52	23.10					
Roof	194.25	10.33	15.2	2076.87	38.16					
20	183.9	9.33	10.33	1599.34	28.89					
19	174.6	9.33	9.33	1517.99	26.95					
18	165.3	9.33	9.33	1517.99	26.48					
17	155.9	9.33	9.33	1517.99	26.25					
16	146.6	9.33	9.33	1517.99	25.78					
15	137.2	9.33	9.33	1517.99	25.55					
14	127.9	9.33	9.33	1517.99	25.08					
13	118.6	9.33	9.33	1517.99	24.38					
12	109.3	9.33	9.33	1517.99	23.44					
11	99.9	9.33	9.33	1517.99	23.20					
10	90.6	9.33	9.33	1517.99	22.50					
9	81.3	10.25	9.33	1592.83	22.45					
8	71	9.33	10.25	1592.83	21.49					
7	61.7	9.33	9.33	1517.99	19.56					
6	52.3	9.33	9.33	1517.99	18.64					
5	43	9.33	9.33	1517.99	17.49					
4	33.7	9.33	9.33	1517.99	16.11					
3	24.3	9.33	9.33	1517.99	16.11					
2	15	14	9.33	1897.90	20.14					
1	1	1	14	1220.25	12.95					
				Base Shear (K)	505					
			Overturniı	ng moment (k ft)	58552					

Table 5 - Wind Force Distribution

In addition to the wind loads being applied 100% in each direction independently; the three other cases designated in figure 16 were also checked. Technical report three confirmed that case four controlled several of the deflections indicating a torsional irregularity. In order to check all of the combinations quickly and efficiently, Ram was utilized to calculate and input the wind loads. After inputting the criteria, the story shears were compared to the original spreadsheet to confirm the model was accurate.

Figure 16- ASCE Wind Cases

After inputting the wind loads and updating the structure to meet the design criteria, a new seismic weight was established to determine earthquake loads. These loads were expected to be much lower than the previous building due to a lighter steel system, and a higher R value (8). A summary of these loads can be found in table 6, and show a large reduction in base shear. The new structural system decreased the base shear from 798 kips to 165 kips, a 79% reduction. Ram was once again utilized to expedite the analysis process when considering accidental and inherent torsion, but the main story shears were compared to ensure accuracy.

	Seismic Force Distribution (Tall Tower) N-S									
Floor	Height (ft)	Weight (k)	(wxhx) ^k	Cvx Fx (K)		Overturning Moment (k ft)				
Penthouse	208.42	205	1825519621	0.029	4.85	1009.82				
Roof	194.25	458.8	7942713060	0.128	21.08	4094.95				
20	183.9	467.1	7378756742	0.119	19.58	3601.50				
19	174.6	466.5	6634249111	0.107	17.61	3074.36				
18	165.3	466.5	5946329945	0.096	15.78	2608.80				
17	155.9	466.8	5296072542	0.085	14.06	2191.38				
16	146.6	467.1	4689080355	0.075	12.45	1824.48				
15	137.2	467.8	4119349662	0.066	10.93	1500.04				
14	127.9	468.5	3590544217	0.058	9.53	1218.85				
13	118.6	469.5	3100563079	0.050	8.23	975.99				
12	109.3	470.5	2644597478	0.042	7.02	767.18				
11	99.9	471.7	2220561107	0.036	5.89	588.77				
10	90.6	472.8	1834895481	0.029	4.87	441.22				
9	81.3	476.2	1498855871	0.024	3.98	323.42				
8	71	477.5	1149379506	0.018	3.05	216.59				
7	61.7	476.2	863274893	0.014	2.29	141.37				
6	52.3	477.1	622618772	0.010	1.65	86.43				
5	43	478.7	423705173	0.007	1.12	48.36				
4	33.7	480.3	261990157	0.004	0.70	23.43				
3	24.3	483	137754822	0.002	0.37	8.88				
2	15	492	54464400	0.001	0.14	2.17				
	Sum	9659.6	62235275995	Base	e Shear (K)	165				
			nent (k ft)	24748						

 Table 6- Seismic Load Distribution

Design Process:

Once again, Ram Structural Systems was used to assist in the design of the frames and speed up the iterative process. Before running the analysis however, the default settings of Ram needed to be adjusted. Braces were modeled as a pin connection at either end. Columns were orientated so that the strong axis of bending was orientated in the direction resisting the force. Centerline modeling was used in order to make rigid zone offsets and panel zone modeling negligible. P-Delta effects were also accounted for in the design and checks of columns. Another assumption made during modeling is the use of a rigid diaphragm. Figure 17 shows a 3D view of the modeled tall tower.

Figure 17- 3D Model of Tall Tower in RAM

The first attempt at designing the braced frames at the Baltimore location utilized an e/L ratio of .1. For a 24 foot span, a link length of 28 inches was used. The first attempt also investigated the use of light gauge bracing, such as C channels in order to reduce weight and cost of the

structure. When the analysis ran however, deflections were calculated to be 27 inches, well above the L/400, 6.21 inches, recommendation for wind serviceability. To correct for such a large displacement, a second attempt was ran utilizing W12X26 braces, adding more frames overall, and shrinking the link element length to 20 inches, but the deflections were still not acceptable. In the end, the design ended up using W14X43 braces as well as W14X48 beams to limit overall deflection to 5.97 inches, within the recommended 6.21 inches. The layout of the frames for the tall and short tower respectively can be found below in figures 18 and 19. The star in the figure represents the most stressed frame and the one that was also checked by hand. A secondary reason so many frames were used was to try and remove the torsional irregularity that existed in the concrete system.

Figure 19 - Short Tower EBF Layout

After getting the design to be acceptable for serviceability, it needed to be checked for strength. Ram has a built in check, but a hand check was done to ensure accurate calculations and understanding of the frame. Figure 20 displays a visualization of all the strength checks that Ram performs on every member. Blue indicates the least stress and an acceptable interaction equation while red indicates a failed requirement. While designing this feature was utilized often to ensure the design was strong enough to resist the loads.

The hand checks were then compared to the Ram model and were found to have the same conclusions. Due to the large amount of shear force being induced in the link element, and a small amount of area to resist the forces, local buckling needed to be investigated.

The seismic provisions printed by AISC require the link element to have web stiffeners. For the design in Baltimore, it was found that full depth double sided stiffeners 3/8" x 3.75" are required at the ends of the link element. Within the link element, the same size stiffeners are required on one side of the web spaced at 12". A detail of this information can be found in figure 21. Several additional requirements were checked such as, rotation angle, shear strength, slenderness, and second order effects. Detailed calculations can be found in appendix D.

Figure 21 - Web Stiffener Detail

Structural Depth, San Francisco Location -

Upon completing the depth analysis and comparison at the original Baltimore location, it was time to hypothetically move the building to San Francisco. To keep most of the site factors similar to the original ones, a site was chosen in San Francisco University to mimic the one at Johns Hopkins, down to the college environment. Figure 22 displays this site. Several buildings around campus have similar architectural features such as glass and brick façade, and the site

Figure 22 - Proposed location for new site

Load Combinations:

Moving the site to San Francisco will obviously increase the earthquake loads significantly, but it also decreased the wind velocity causing a decrease in base shear.

Criteri	a			Ε	-WD	irection	
Tall Tower		Floor	Height (ft)	Kz	qz	p (windward) (psf)	p(leeward) (psf)
Gf	0.87	Penthouse	208.42	1.21	19.023	16.66	-11.70
Cp (Windward)	0.8	Roof	194.25	1.19	18.709	16.39	-11.70
C _p (Leeward)	-0.5	20	183.9	1.17	18.394	16.11	-11.70
Gcpi	0.18	19	174.6	1.15	18.080	15.84	-11.70
Velocity (MPH)	85	18	165.3	1.13	17.765	15.56	-11.70
Lower Tower		17	155.9	1.12	17.608	15.42	-11.70
Gf	0.85	16	146.6	1.1	17.294	15.15	-11.70
C _p (Windward)	0.8	15	137.2	1.09	17.137	15.01	-11.70
C _p (Leeward)	-0.5	14	127.9	1.07	16.822	14.74	-11.70
Gcpi	0.18	13	118.6	1.04	16.350	14.32	-11.70
Velocity (MPH)	85	12	109.3	1	15.722	13.77	-11.70
		11	99.9	0.99	15.564	13.63	-11.70
		10	90.6	0.96	15.093	13.22	-11.70
		9	81.3	0.93	14.621	12.57	-8.85
		8	71	0.89	13.992	12.03	-8.85
		7	61.7	0.85	13.363	11.49	-8.85
		6	52.3	0.81	12.734	10.95	-8.85
		5	43	0.76	11.948	10.28	-8.85
		4	33.7	0.7	11.005	9.46	-8.85
		3	24.3	0.7	11.005	9.46	-8.85
		2	15	0.7	11.005	9.46	-8.85
		1	1	0.7	11.005	9.46	-8.85

 Table 7 - Wind Load Calculations at San Francisco

	E-W Direction Tall Tower										
Floor	Height (ft)	Height Below (ft)	Heigh Above (ft)	Trib Area (ft2)	Story Force (K)						
Penthouse	208.42	15.2	0	1236.52	20.61						
Roof	194.25	10.33	15.2	2076.87	34.04						
20	183.9	9.33	10.33	1599.34	25.77						
19	174.6	9.33	9.33	1517.99	24.04						
18	165.3	9.33	9.33	1517.99	23.62						
17	155.9	9.33	9.33	1517.99	23.41						
16	146.6	9.33	9.33	1517.99	23.00						
15	137.2	9.33	9.33	1517.99	22.79						
14	127.9	9.33	9.33	1517.99	22.37						
13	118.6	9.33	9.33	1517.99	21.74						
12	109.3	9.33	9.33	1517.99	20.91						
11	99.9	9.33	9.33	1517.99	20.70						
10	90.6	9.33	9.33	1517.99	20.07						
9	81.3	10.25	9.33	1592.83	20.03						
8	71	9.33	10.25	1592.83	19.17						
7	61.7	9.33	9.33	1517.99	17.45						
6	52.3	9.33	9.33	1517.99	16.62						
5	43	9.33	9.33	1517.99	15.60						
4	33.7	9.33	9.33	1517.99	14.37						
3	24.3	9.33	9.33	1517.99	14.37						
2	15	14	9.33	1897.90	17.96						
1	1	1	14	1220.25	11.55						
				Base Shear (K)	450						
			Overturni	ng moment (k ft)	52227						

Table 8 - Wind Force Distribution at San Francisco

Tables 7 and 8 show a decrease in base shear from 505 kips to 450 kips due to wind in the critical direction. Seismic loads also needed to be recalculated using higher acceleration values obtained from ASCE7-05. Detailed calculation of the criteria can be found in appendix E, but table 9 summarizes the results. The base shear increased 120% from 165 kips to 362 kips.

Seismic Force Distribution (Tall Tower) N-S						
Floor	Height (ft)	Weight (k)	(wxhx) ^k	Cvx	Fx (K)	Overturning Moment (k ft)
Penthouse	208.42	205	628517219	0.031	11.08	2308.94
Roof	194.25	458.8	2540799702	0.124	44.78	8699.35
20	183.9	467.1	2369103495	0.115	41.76	7679.29
19	174.6	466.5	2141421635	0.104	37.74	6590.25
18	165.3	466.5	1929907763	0.094	34.02	5622.96
17	155.9	466.8	1728845679	0.084	30.47	4750.70
16	146.6	467.1	1540044576	0.075	27.14	3979.45
15	137.2	467.8	1361718146	0.066	24.00	3293.04
14	127.9	468.5	1195094549	0.058	21.06	2694.19
13	118.6	469.5	1039605438	0.051	18.32	2173.25
12	109.3	470.5	893802573	0.043	15.75	1721.94
11	99.9	471.7	757076198	0.037	13.34	1333.09
10	90.6	472.8	631583484	0.031	11.13	1008.59
9	81.3	476.2	521160965	0.025	9.19	746.82
8	71	477.5	404986249	0.020	7.14	506.82
7	61.7	476.2	308561441	0.015	5.44	335.57
6	52.3	477.1	226209636	0.011	3.99	208.53
5	43	478.7	156931663	0.008	2.77	118.94
4	33.7	480.3	99396416	0.005	1.75	59.04
3	24.3	483	53969882	0.003	0.95	23.12
2	15	492	22351521	0.001	0.39	5.91
	Sum	9659.6	20551088230	Base Shear (K)		362
	Base Overturning moment (k ft				ment (k ft)	53860

 Table 9 - Seismic Force Distribution in Tall Tower

Results:

The idea behind moving the structure to California was to investigate how many more additional members would be required or upsized. Upon running the analysis as designed for the Baltimore area, several members needed 10-20 lbs/ft of additional weight, but nothing too drastic. It was confirmed that earthquake loads controlled in the North-South direction for strength and deflections. Unfortunately the structure was also found to still have a torsional irregularity. Upon performing the calculations found in figure23 the structure was found to have the horizontal irregularity 1a, but not extreme 1b as defined in figure 24.

Figure 23 - Torsion Irregularity Check

	TABLE 12.3-1 HORIZONTAL STRUCTURAL IRREGULARITIES											
	Irregularity Type and Description	Reference Section	Seismic Design Category Application									
1a.	Torsional Irregularity is defined to exist where the maximum story drift, computed including accidental torsion, at one end of the structure transverse to an axis is more than 1.2 times the average of the story drifts at the two ends of the structure. Torsional irregularity requirements in the reference sections apply only to structures in which the diaphragms are rigid or semirigid.	12.3.3.4 12.8.4.3 12.7.3 12.12.1 Table 12.6-1 Section 16.2.2	D, E, and F C, D, E, and F B, C, D, E, and F C, D, E, and F D, E, and F B, C, D, E, and F									
1b.	Extreme Torsional Irregularity is defined to exist where the maximum story drift, computed including accidental torsion, at one end of the structure transverse to an axis is more than 1.4 times the average of the story drifts at the two ends of the structure. Extreme torsional irregularity requirements in the reference sections apply only to structures in which the diaphragms are rigid or semirigid.	12.3.3.1 12.3.3.4 12.7.3 12.8.4.3 12.12.1 Table 12.6-1 Section 16.2.2	E and F D B, C, and D C and D C and D D B, C, and D									

Figure 24 - ASCE Irregularity's

Due to the torsional irregularity, the story drifts were no longer permitted to be calculated at the center of mass, but at the point of largest displacement. The point "B" in figure 23 represents the point used for calculating story drifts and comparing them to the acceptable limits. The story drift ratio was within the acceptable limits as prescribed by ASCE 7-05, figure 25, and can be seen below in table 10.

Drift Ratios at Point B Including Accidental Torsion - Earthquake										
	N-S Loading									
Story	Height (in)	Allowable story Drift (inches)	Story Drift (inches)	Story Drift (inches) with Amplification	Compliant?					
Roof	2484	2.64	0.6454	2.5816	ok					
20	2352	2.4	0.5982	2.3928	ok					
19	2232	2.4	0.5979	2.3916	ok					
18	2112	2.4	0.5976	2.3904	ok					
17	1992	2.4	0.5976	2.3904	ok					
16	1872	2.4	0.5845	2.338	ok					
15	1752	2.4	0.567	2.268	ok					
14	1632	2.4	0.5422	2.1688	ok					
13	1512	2.4	0.517	2.068	ok					
12	1392	2.4	0.4848	1.9392	ok					
11	1272	2.4	0.4538	1.8152	ok					
10	1152	2.4	0.4172	1.6688	ok					
9	1032	2.88	0.4532	1.8128	ok					
8	888	2.4	0.33	1.32	ok					
7	768	2.4	0.291	1.164	ok					
6	648	2.4	0.2478	0.9912	ok					
5	528	2.4	0.2067	0.8268	ok					
4	408	2.4	0.1624	0.6496	ok					
3	288	2.4	0.0191	0.0764	ok					
2	168	3.36	0.0158	0.0632	ok					
1	0	0	0	0						

 Table 10 - Story Drift Ratio Check

Structure	Occ	cupancy Catego	ory	
	I or II	III	IV	
Structures, other than masonry shear wall structures, 4 stories or less with interior walls, partitions, ceilings and exterior wall systems that have been designed to accommodate the story drifts.	$0.025h_{sx}^{c}$	0.020h _{sx}	0.015h _{sx}	
Masonry cantilever shear wall structures d	0.010h _{sx}	$0.010h_{sx}$	$0.010h_{sx}$	
Other masonry shear wall structures	$0.007h_{sx}$	$0.007h_{sx}$	$0.007h_{sx}$	
All other structures	$0.020h_{sx}$	$0.015h_{sx}$	$0.010h_{sx}$	
h_{sx} is the story height below Level x. For seismic force–resisting systems comprised solely of moment frames in So allowable story drift shall comply with the requirements of Section 12.12.1. There shall be no drift limit for single-story structures with interior walls, part that have been designed to accommodate the story drifts. The structure sep not waived. Structures in which the basic structural system consists of masonry shear walls from their basic structural system consists of masonry shear walls	eismic Design 1. titions, ceilings aration require designed as ve	Categories D s, and exterior ement of Sect rtical element	, E, and F, (r wall syster ion 12.12.3 ts cantilever	

Figure 25- ASCE Allowable Story Drift Ratio

Torsion was a very difficult issue to remove from this building due the height and geometry of the building. The center-of-mass and center-of-rigidity were within two feet of one another on every floor, but added up over so many floors caused significant torsion. With the building

being advertised as a graduate level student housing, putting frames on the exterior of the building seemed detrimental to the views of tenants. Every apartment has large windows overlooking the city, but with frames on the exterior, that view would be ruined and a potential eye sore. With those limitations, the bracing in the North-South direction was close to the center of the building, which decreases the buildings ability to resist torsional shears. With fewer frames in the North-South direction, the most critical frame due to earthquake loads was found. It is denoted in figure 26 with a star and was checked to make sure it complied with the seismic provisions.

Figure 26 - Critical Frame

The details of these calculations can be viewed in appendix F. The rest of the frames were designed using Ram to expedite the design process. This design did need larger and more closely spaced web stiffeners and is summarized below visually in figure 27.

Figure 27 - Web Stiffeners at San Francisco

Construction Management Breadth –

It was predicted that a steel system would lead to a quicker schedule given the height and repetition of every floor. By performing a schedule and cost analysis, it was proved that not only was the schedule expedited, but it was also significantly cheaper to build. The original concrete structure including foundations began on July 15, 2010 and ended June 23, 2011. A copy of this existing schedule can be found in figure 28.

Founda	tions	65	0 15-Jul-10 A 29-Sep-1	0 A 15-Jul-10 29-Sep-10	29-Siep-10 A. Foundations	
A1000	Notice to Proceed	0	0 15-Jul-10 A	15-Jul-10	Notice to Proceed	
A1020	Clark Mobilization	10	0 15-Jul-10 A 28-Jul-10	A 15-Jul-10 28-Jul-10	Clark Mobilization	***************************************
A1030	Site Fencing	5	0 26-Jul-10 A 28-Jul-1	A 28-Jul-10 28-Jul-10	E Site Fencing	
A1035	Erosion Control	10	0 20-Jul-10 A 26-Jul-10	A 20-Jul-10 26-Jul-10	Erosion Control	
A1040	Building Survey	10	0 22-Jul-10 A 04-Aug-1	0 A 22-Jul-10 04-Aug-10	E Building Survey	
A1050	Caisson Mobilization	10	0 26-Jul-10 A 03-Aug-1	0 A 26-Jul-10 03-Aug-10	Calisson Mobilizațion	
A1060	Caisson Installation	40	0 04-Aug-10 A 22-Sep-1	0 A 04-Aug-10 22-Sep-10	Caisson Installation	
A1065	Prepare Building Pad	20	0 09-Sep-10 A 29-Sep-1	0 A 09-Sep-10 29-Sep-10	Prepare Building Pad	
A1070	Caisson Demobilization	5	0 20-Sep-10 A 24-Sep-1	0 A 20-Sep-10 24-Sep-10	Caisson Demobilization	
Structu	re	197	0 28-Sep-10 A 23-Jun-1	1 A 28-Sep-10 23-Jun-11		23-Jun-11 A, Structure
B1000	Tower Crane Pad	5	0 01-Oct-10 A 07-Oct-1	0 A 01-Oct-10 07-Oct-10	Tower Crane Pad	
B1010	Tower Crane Erection	3	0 11-Oct-10 A 14-Oct-1	0 A 11-Oct-10 14-Oct-10	Tower Crane Erection	
B1020	Grade Beams / Wall Footings	25	0 28-Sep-10 A 09-Nov-1	0 A 28-Sep-10 09-Nov-10	Grade Beams / Wall Footings	
B1030	Elevator Pit Slab / Walls	5	0 13-Oct-10 A 18-Oct-1	0 A 13-Oct-10 18-Oct-10	Elevator Pit Slab / Walls	
B1040	W.P. Elevator Pit Walls / Backfill	5	0 22-Oct-10 A 26-Oct-1	0 A 22-Oct-10 26-Oct-10	W.P. Elevator Pit Walls / Backfill	
B1050	Foundation Walls	20	0 19-Oct-10 A 10-Nov-1	0 A 19-Oct-10 10-Nov-10	Foundation Walls	
B1060	Shearwalls / Columns to Level 2	25	0 07-Oct-10 A 08-Nov-1	0 A 07-Oct-10 08-Nov-10	Shearwalls / Columns to Level 2	
B1070	Interior Backfill	20	0 20-Oct-10 A 19-Nov-1	0 A 20-Oct-10 19-Nov-10	Interior Backfill	
B1080	Below Grade MEP Rough In	15	0 27-Oct-10 A 30-Nov-1	0 A 27-Oct-10 30-Nov-10	Below Grade MEP Rough In	
B1090	Slab on Grade	15	0 12-Nov-10 A 01-Dec-1	0 A 12-Nov-10 01-Dec-10	Slab on Grade	
B1100	Waterproof Building Perimeter	20	0 25-Oct-10 A 22-Nov-1	0 A 25-Oct-10 22-Nov-10	Waterproof Building Perimeter	
B1110	Backfill Building Perimeter	20	0 08-Nov-10 A 23-Nov-1	0 A 08-Nov-10 23-Nov-10	Backfill Building Perimeter	
B1120	Level 2 Slab	12	0 10-Nov-10 A 10-Dec-1	0 A 10-Nov-10 10-Dec-10	Level 2 Slab	
B1130	Level 3 Slab	7	0 01-Dec-10 A 21-Dec-1	0 A 01-Dec-10 21-Dec-10	Level 3 Stab	
B1140	Level 4 Slab	7	0 20-Dec-10 A 30-Dec-1	0 A 20-Dec-10 30-Dec-10	Level 4 Slab	
B1150	Level 5 Slab	7	0 22-Dec-10 A 07-Jan-1	1 A 22-Dec-10 07-Jan-11	Level 5 Stab	
B1160	Level 6 Slab	7	0 03-Jan-11 A 14-Jan-1	1 A 03-Jan-11 14-Jan-11	Level 6 Stab	
B1170	Level 7 Slab	7	0 10-Jan-11 A 25-Jan-1	1 A 10-Jan-11 25-Jan-11	Level 7 Stab	
B1180	Level 8 Stab	7	0 17-Jan-11 A 02-Feb-1	1 A 17-Jan-11 02-Feb-11	Lavaria Sigo	
B1190	Level 9 Stab	7	0 26-Jan-11 A 11-Feb-1	1 A 26-Jan-11 11-Feb-11	Level 9 Stab	
B1200	Level 10 Stab	6	0 10-Feb-11 A 17-Feb-1	1 A 10-Feb-11 1/-Feb-11		4
B1210	Level 11 Slab	6	0 17-Feb-11 A 24-Feb-1	1 A 17-Feb-11 24-Feb-11	Level 11 Stap	
B1220	Level 12 Stab	6	0 24-Feb-11 A 03-Mar-1	TA 24-Fab-11 03-Mar-11	Level 12 Diab	
B1230	Level 13 Stab	0	0 01-Mar-11 A 09-Mar-1	1 A 01-Mar-11 09-Mar-11	Level 13 Diab	
B1240	Level 14 Stab	0	0 00-Mar-11 A 10-Mar-1	1 A 00-Mar-11 10-Mar-11		
B1200	Level 10 Stab	0	0 01 Mar 11 A 20 Mar 1	1 A 21 Mar 11 20 Mar 11	Land 10 Ca	Ĩ
B1200	Level 10 Stab	6	0 20-Mar-11 A 05-Apr-1	1.4 20-Mar-11 05-Are-11		Siab
B1280	Level 18 Slab	6	0 04-Apr-11 A 12-Apr-1	1 A 04-Apr-11 12-Apr-11	Lavel 1	8 Slab
B1200	Level 19 Slah	6	0 11-Arr. 11 A 10-Arr. 1	1 A 11-Apr-11 10-Apr-11	Level	10 Slab
B1300	Level 20 Slab	6	0 18-Apr-11 A 25-Apr-1	1.A 18-Apr-11 25-Apr-11	Leve	120 Slab
B1310	Boof Level Slab	6	0 22-Apr. 11 A 04-May.	1.4 22.Apr. 11 04.May. 11	Be	xof Level Slab
B1313	Shaarwalls Ahova Boot	5	0 02.Max.11 A 06.Max.	1.4 02-May-11 06-May-11	• S	hearwalls Above Roof
B1316	Bool Curbs	5	0 02-May-11 A 12-May-	1 A 02-May-11 12-May-11		Real Curbs
B1320	Low Bool Steel Framing	10	0 11-Apr-11 A 20-Apr-1	1 A 11-Apr-11 20-Apr-11	Low F	Roof Steel Framing
B1325	Low Roof Trellis Steel	5	0 10-Jun-11 A 17-Jun-1	1.A 10-Jun-11 17-Jun-11		Low Roof Trellis Steel
B1330	High Roof Steel Framing	10	0 23-May-11 A 09-Jun-1	1 A 23-May-11 09-Jun-11		High Roof Steel Framing
B1340	Level 1 Reshore Removal	7	0 03-Jan-11 A 07-Jan-1	1 A 03-Jan-11 07-Jan-11	Level 1 Reshore Removal	
B1350	Level 2 Reshore Removal	7	0 06-Jan-11 A 11-Jan-1	1 A 06-Jan-11 11-Jan-11	Level 2 Reshore Removal	
B1360	Level 3 Reshore Removal	7	0 13-Jan-11 A 18-Jan-1	1 A 13-Jan-11 18-Jan-11	Level 3 Reshore Removal	
B1370	Level 4 Reshore Removal	7	0 20-Jan-11 A 27-Jan-1	1 A 20-Jan-11 27-Jan-11	Level 4 Reshore Remov	
B1380	Level 5 Reshore Removal	6	0 07-Feb-11 A 18-Feb-1	1 A 07-Feb-11 18-Feb-11	Level 5 Reshpre R	emoval
B1390	Level 6 Reshore Removal	6	0 14-Feb-11 A 25-Feb-1	1 A 14-Feb-11 25-Feb-11	Level 6 Reshore	Removal
B1400	Level 7 Reshore Removal	6	0 21-Feb-11 A 25-Feb-1	1 A 21-Feb-11 25-Feb-11	Level 7 Reshore	Removal
B1410	Level 8 Reshore Removal	6	0 28-Feb-11 A 07-Mar-1	1 A 28-Feb-11 07-Mar-11	📕 Level 8 Reshor	e Removal
B1420	Level 9 Reshore Removal	6	0 07-Mar-11 A 14-Mar-1	1 A 07-Mar-11 14-Mar-11	E Level 9 Resh	ore Removal
B1430	Level 10 Reshore Removal	6	0 14-Mar-11 A 21-Mar-1	1 A 14-Mar-11 21-Mar-11	Level 10 Re	shore Removal
B1440	Level 11 Reshore Removal	6	0 21-Mar-11 A 28-Mar-1	1 A 21-Mar-11 28-Mar-11	Level 11 R	leishore Removal
B1450	Level 12 Reshore Removal	6	0 28-Mar-11 A 04-Apr-1	1 A 28-Mar-11 04-Apr-11	Evel 12	Reshore Removal
B1460	Level 13 Reshore Removal	6	0 04-Apr-11 A 11-Apr-1	1 A 04-Apr-11 11-Apr-11	Lovel 13	3 Reshore Removal
B1470	Level 14 Reshore Removal	6	0 11-Apr-11 A 18-Apr-1	1 A 11-Apr-11 18-Apr-11	Ecvel	14 Reshore Removal
B1480	Level 15 Reshore Removal	6	0 18-Apr-11 A 25-Apr-1	1 A 18-Apr-11 25-Apr-11	Leve	I 15 Reshore Removal
B1490	Level 15 Heshore Hemoval	6	0 25-Apr-11 A 29-Apr-1	1 A 25-Apr-11 29-Apr-11	Lev	er in neurora netroja
B1500	Level 17 Reshore Removal	6	0 02-May-11 A 06-May-	1 A U2-May-11 06-May-11		wei 17 Meshore Hernova
B1510	Level 18 Reshore Removal	6	0 09-May-11 A 13-May-	1 A 09-May-11 13-May-11		Level 18 Heshore Hemoval
B1520	Lever 19 Reshore Removal	6	0 09-May-11 A 13-May-	1 A 09-May-11 13-May-11		Level 18 nestigre neglova
B1530	Lever 20 Meshore Hemoval	6	0 09-May-11 A 13-May-	1 A 09-May-11 13-May-11		Constant Oliver Design
B1540	Concrete Clean Down	15	0 02-May-11 A 21-May-	1 A 02-May-11 21-May-11		Concrete Clean Down
B1550	Tower Crane Removal	5	0 20-Jun-11 A 23-Jun-1	1 A 20-Jun-11 23-Jun-11		Towar Crane Herrowal
Actua	I Work Milestor	ю			Graduate Student Housing	ASK INTER: All ACTIVITIES
Rema	aining Work 🛛 🕶 Summa	ry			December 2011 Update	(c) Primavera Systems, Inc
Critic	al Remaining Work					
				1.0		

Figure 28 - Existing Schedule

A new schedule was made using Microsoft Project starting also starting on July 15, 2010. Using durations obtained from RS means and takeoffs from Ram, the new schedule lasted until April 12, 2011, causing a time savings of over two months. The original schedule was drawn up to have an entire level poured in seven days, but would often take over two weeks in the middle of winter. Pouring concrete during cold days is often difficult and sometimes impossible to work through, which seemed to be the case on this project. A copy of the new schedule can be found in figure 29.

No. Proceention with an any process of a section of a se	0		Mude	Task Name	Duration	start.	FIDER
Image: style	0		9	Foundations and structure	195 days	Thu 7/15/10	0 Tun 4/12/11
Image: state Image: state<	1		8	Notice to Proceed	0 days	Thu 7/15/10	Thu 7/15/10
Image Image <th< td=""><td>3 11</td><td></td><td>1</td><td>Site Fencing</td><td>3 days</td><td>Mon 7/26/10</td><td>Wed 7/28/10</td></th<>	3 11		1	Site Fencing	3 days	Mon 7/26/10	Wed 7/28/10
Image Image <th< td=""><td>4 1</td><td>-</td><td>0 0</td><td>Erosion Control Building Survey</td><td>5 days 10 days</td><td>Wed 7/21/10 Thu 7/22/30</td><td>Mon 7/26/10 Mon 8/2/10</td></th<>	4 1	-	0 0	Erosion Control Building Survey	5 days 10 days	Wed 7/21/10 Thu 7/22/30	Mon 7/26/10 Mon 8/2/10
Normen metalent Normen met	6		3	Classon Mobilization	8 days	Mon 7/26/10	Tue 8/3/10
P P< P<< P<< P<< P<< P<< P<< P<< P	8 1		8	Prepare Building Pad	15 days	Mon 9/13/10	Wed 9/29/10
im	9 =	1	15	Calsson Demobilization	4 days	Thu 9/23/10	Mon 9/27/10
Image None Case Breach Name Number Space Breach Name Number Space Breach Name Number Space Breach Name Number Space Breach Num Space Breach Num Space Breach <	10		*	Structure Treest Crane Part	141 days	Tue 9/28/10	Tue 4/12/11
Image: stype in the s	12 10	1	18	Tower Grane Erectio	n 3 days	Mon 10/11/1	10Wed 10/13/1
Notes Notes <th< td=""><td>13 📷</td><td>-</td><td>8</td><td>Grade Beams/Wall</td><td>25 days</td><td>Tue 9/28/10</td><td>Tue 10/26/10</td></th<>	13 📷	-	8	Grade Beams/Wall	25 days	Tue 9/28/10	Tue 10/26/10
Subjuktion Finance of the sector	14	-	8	Footings Bevator Pit	5 days	Wed 10/13/1	0 Mon 10/18/1
Number Number Number Number Number Number Number 1 Number	15			Slab/Walls	6 days	Fri 10/22/10	Wed 10/2744
m m meantations Diskup Diskup <thdiskup< th=""> <thdiskup< th=""></thdiskup<></thdiskup<>			-	Walls/Backfill	a surfree		1444 Line 4/12
New 3 New 3 <th< td=""><td>10 11</td><td></td><td>2 8</td><td>Foundation Walls Erect Columns to</td><td>20 days 3 days</td><td>Tue 10/19/10 Thu 11/11/10</td><td>0 Wed 11/10/1 0 Sat 11/13/10</td></th<>	10 11		2 8	Foundation Walls Erect Columns to	20 days 3 days	Tue 10/19/10 Thu 11/11/10	0 Wed 11/10/1 0 Sat 11/13/10
Desc Below (asses) Bit area Main (LAU) Vertical (LAU) II II Solution (Solution) Bit area Main (LAU) Vertical (LAU) II II Solution (Solution) Bit area Main (LAU) Vertical (LAU) III III Solution (Solution) Bit area Main (LAU) Vertical (LAU) III III Solution (Solution) Bit area Main (LAU) Vertical (LAU) III III Solution (Solution) Bit area Main (LAU) Vertical (LAU) III III Solution (Solution) Bit area Bit area <td>18 75</td> <td></td> <td>8</td> <td>Hevel 3 Interior Backfill</td> <td>20 days</td> <td>Fri 10/29/10</td> <td>5-8 11/20/10</td>	18 75		8	Hevel 3 Interior Backfill	20 days	Fri 10/29/10	5-8 11/20/10
B B	19		8	Below Grade MEP Rough In	15 days	Mon 11/8/10	Wed 11/24/1
Image: state	20		3	Slab on Grade	15 days	Mon 11/22/1	LDWed 12/8/10
Image: state	21		4	Waterproof Building Perimeter	20 days	Mon 11/1/10	Tue 11/23/10
12 13 14 15 16<	22	7	8	Backfill Building Perimeter	10 days	Mon 9/13/10	Thu 9/23/10
14 Bench Barens und Boot S. Same Philippi Mon 112210 28 5 Same Deschort Son S. Same Trippi Mon 112210 29 5 Same Deschort Son S. Same Trippi Mon 112210 Mon 112210 29 5 Same Deschort Son S. Same Trippi Mon 112210 Mon 112210 29 5 Same Deschort Son S. Same Trippi Mon 112210 Mon 122100 29 5 Berch Deschort Son S. Same Trippi Mon 122100 Mon 122100 20 6 Deschort Son	23	1	8	Erect Beams floor 2-	3 4 days	Mon 11/15/1	10Thu 11/18/19
Nov 2 Nov 2 <th< td=""><td>24</td><td>-</td><td>8</td><td>Brect Braces up to</td><td>3 days</td><td>Fri 11/19/10</td><td>Mon 11/22/1</td></th<>	24	-	8	Brect Braces up to	3 days	Fri 11/19/10	Mon 11/22/1
Image: Section of the sectio	25	-	8	Place Deck floor 2-3	3 days	Tue 11/23/10	0 Thu 11/25/10
	26			they transformer	3 den	Bi 13 /36/14	Mon 11 /10 in
27 7 7 8 9 9 0 0 0 111111111111111111111111111111111111	-		*	area atopshoof 2-3	1 04/3	11 112 20/10	AND 11/0/1
Bit Desc Conner ID Steps Fit LU2G1D Mon LU2RID P ID Enc. Extrans Enc. 45 Steps The LU2RID Fit LU2RID P ID Enc. Extrans Enc. 45 Steps Stel LU2RID Fit LU2RID P ID Enc. Extrans Enc. 45 Steps Stel LU2RID Fit LU2RID P ID Enc. Extrans Enc. 45 Steps Stel LU2RID Fit LU2RID P ID Enc. Extrans Enc. 45 Steps Stel LU2RID Fit LU2RID P ID Enc. Extrans Enc. 45 Steps Mot LU2RID Fit LU2RID P ID Enc. Extrans Enc. 45 Steps Mot LU2RID Stel LU2RID P ID Enc. Extrans Enc. 45 Steps Mot LU2RID Stel LU2RID P ID Enc. Extrans Enc. 45 Steps Mot LU2RID Stel LU2RID P Stel LU2RID Stel LU2RID Stel LU2RID Stel LU2RID P Stel LU2RID Stel LU2RID Stel LU2RID Stel LU2RID	17	1	\$	Place Concrete floor 2-3	4 days	Tue 11/30/10	₽ FH 12/3/10
P Perces desawes flow 4-5 6 area Nut 11,00(15 Pri 12/01/0 P Perces desawes flow 4-5 6 area 6 area 6 area 11 Perces desawes flow 4-5 6 area 6 area <td>28</td> <td>1</td> <td>8</td> <td>Erect Columns to level 5</td> <td>3 days</td> <td>Fri 11/26/10</td> <td>Mon 11/29/1</td>	28	1	8	Erect Columns to level 5	3 days	Fri 11/26/10	Mon 11/29/1
Description Series Se	29		5	Brect Beams floor 4-	5 4 days	Tue 11/30/10	0 Fri 12/3/10
1 1	30	1	1	Brects Braces up to	3 days	Sat 12/4/10	Tue 12/7/10
1 9eer black foor 45 9eer 9eer< 9eer< <t< td=""><td>11</td><td>-</td><td>5</td><td>Place Deck floor 4-5</td><td>3 days</td><td>Wed 12/8/10</td><td>Fri 12/10/10</td></t<>	11	-	5	Place Deck floor 4-5	3 days	Wed 12/8/10	Fri 12/10/10
Image: Control of Con	32	-	8	Shear Studs floor 4-5	3 days	Sat 12/11/10	Tue 12/14/10
	33		-	Place Concerte Prov	Arthread	Wed 12/11/0	IDS# 12/18/10
Matrix Server Freeworder Serv				4-5	- sty	***** 14/19/1	
9 10 10 10 10 10 10 10 10 10 10 <th< td=""><td>54</td><td></td><td>9</td><td>Spray Fireproofing floor 2-3</td><td>2 days</td><td>Mon 12/13/1</td><td>to fue 12/14/10</td></th<>	54		9	Spray Fireproofing floor 2-3	2 days	Mon 12/13/1	to fue 12/14/10
Model Detect Bases flow 6-2 4 4044 Wet 22/15/19-84 12/21/19 22 Image Benefities up to Bases Marge Mar	35	1	8	Erect Columns to level 7	3 days	Sat 12/11/10	Tue 12/14/10
17 18 12<	36	1	8	Brect Beams floor 6-	7 4 days	Wed 12/15/1	105m 12/18/10
Bit Desc	37	1	3	Erect Braces up to floor 7	3 days	Mon 12/20/1	10Wed 12/22/1
P Seven Substitute fore Seven Ment 12/21/20/West 12/28/10 4 B Ment Converte fine 6 days mit 12/21/20/West 12/28/10 4 B Seven Versenover 8 days mit 12/21/20/West 12/28/10 4 B Seven Versenover 8 days mit 12/21/20/West 12/28/10 4 B Seven Versenover 8 days mit 12/21/20/West 12/28/10 4 B Seven Versenover 8 days mit 12/21/20/West 12/28/10 4 B Seven Versenover 8 days mit 12/21/20/West 12/28/10 4 B Seven Versenover 8 days mit 12/21/20/West 12/28/11 4 B Seven Versenover 8 days mit 12/21/20/West 12/21/11 4 B Seven Versenover 8 days mit 12/21/11 Mont 12/21/11 4 B Seven Versenover 8 days mit 12/21/11 Mont 12/21/11 4 B Seven Versenover 8 days mit 12/21/11 Mont 12/21/11 5 Seven Versenover 8 days <td< td=""><td>38</td><td>-</td><td>8</td><td>Place Deck floor 6-7</td><td>3 days</td><td>Thu 12/23/10</td><td>0 Sat 12/25/10</td></td<>	38	-	8	Place Deck floor 6-7	3 days	Thu 12/23/10	0 Sat 12/25/10
Image: Section of the sectio	39		8	Shear Studs floor 6-7	3 days	Mon 12/27/1	10Wed 12/29/1
- -	40			Place Concrete Proce	4 days	Thu 22/20/20	0 Mon 1/3/1-
No. No. <td>41</td> <td></td> <td>-</td> <td>6-7</td> <td>2.4</td> <td>The All and All</td> <td>End all man and</td>	41		-	6-7	2.4	The All and All	End all man and
44 5 Benck Clamma for B4 Series A Series A <thsries a<="" th=""> Series A <th< td=""><td>-1</td><td></td><td>9</td><td>Spray Fireproofing floor 4-5</td><td>2 days</td><td>Fri 12/24/10</td><td>Sat 12/25/10</td></th<></thsries>	-1		9	Spray Fireproofing floor 4-5	2 days	Fri 12/24/10	Sat 12/25/10
41 51 Dect Beams flow H4 4 Gaps The L2/DL1 Mon L2/DL1 41 4 5 Beet Beams flow H4 Gaps Int L2/DL1 Poil L2/DL1 44 5 Beet Beams flow H4 Gaps Int L2/DL1 Poil L2/DL1	42	1	8	Erect Columns to level 9	3 days	Mon 12/27/1	10Wed 12/29/1
4 5 Deck farmer in the start in the sta	43	1	8	Brect Beams floor 8-	9 4 days	Thu 12/30/10	0 Mon 1/3/11
8 Pick Dekt floor & B Stays Pit1/711 Won L/L/Y1 6 Sear Starts floor & B Sear Pit2/11 Pit2/211 6 Sear Starts floor & B Sear Pit2/11 Pit2/211 6 Sear Starts floor & G Sear Pit2/211 Pit2/211 6 Sear Starts floor & G Sear Wei L/L/11 Pit2/211 6 Sear Starts floor & G Sear Starts floor & G Wei L/L/11 Pit2/211 6 Sear Starts floor & G Sear Starts floor & G Wei L/L/11 Wei L/L/11 Wei L/L/11 7 Sear Starts floor & G Sear Starts floor & G Non L/L/11 Non L/L/11 8 Sear Starts floor & G Sear Starts floor & G Non L/L/11 Non L/L/11 8 Sear Starts floor & G Sear Starts floor & G Non L/L/11 Non L/L/11 8 Sear Starts floor & G Sear Starts floor & G Non L/L/11 Non L/L/11 8 Sear Starts floor & G Sear Starts floor & G Non L/L/11 Non L/L/11 9 Sear Starts floor	61	1	0	Brect Braces up to floor 9	3 days	Tue 1/4/11	Thu 1/6/11
4 Search bland floor ike ja jawy Tue L/11/11 Tue L/11/11 </td <td>45</td> <td></td> <td>8</td> <td>Place Deck floor 8-9</td> <td>3 days</td> <td>Fri 1/7/11</td> <td>Mon 1/10/11</td>	45		8	Place Deck floor 8-9	3 days	Fri 1/7/11	Mon 1/10/11
Alternation Part Converte flow Stays Philip Converte flow Stays Philip Converte flow Stays Philip Converte flow Philit Converte flow	46		8	Shear Studs floor 8-9	3 days	Tue 1/11/11	Thu 1/13/11
Her Her <td>47</td> <td></td> <td>-</td> <td>Place Concrete floor</td> <td>4 days</td> <td>Fri 1/14/11</td> <td>Tue 1/18/11</td>	47		-	Place Concrete floor	4 days	Fri 1/14/11	Tue 1/18/11
Normalization Status Wett Livini 1 Data/Livini 1 0 5 Bench Caleman 10 Status 1 The Livini 1 Numel Livini 1 <td< td=""><td></td><td></td><td></td><td>8-9</td><td>2 direct</td><td>Mont & CE. IS</td><td>Thusday</td></td<>				8-9	2 direct	Mont & CE. IS	Thusday
90 70 Benct Clamers to Benct Stamers to Benct Stame	-		9	floor 6-7	1 24/1	weu 1/5/11	cnu s/6/11
90 Image Service Servi	49	1	6	Erect Columns to Invel 11	2 days	Tue 1/11/11	We6 1/17/11
N N Descriptions to plays Mess (1/3/11 Tota (1/3/11) N S Pace Descriptions Says Wet (1/3/11 Tota (1/3/11) N S Pace Descriptions Says Wet (1/3/11 Tota (1/3/11) N S Says Wet (1/3/11 Tota (1/3/11) N S Says Wet (1/3/11 Tota (1/3/11) N S Says Met (1/3/11) Sat (1/3/11) N S Saray Formations Says Met (1/3/11) Sat (1/3/11) N S Saray Formations Says Met (1/3/11) Met (1/3/11) Met (1/3/11) N S Saray Formations Says Met (1/3/11) Met (1/3/11) Met (1/3/11) N S Descriptions Says Met (1/3/11) Met (1/3/11) Met (1/3/11) N Descriptions Says Met (1/3/11) Met (1/3/11) Met (1/3/11) N Descriptions Says Met (1/3/11) Met (1/3/11) Met (1/3/11)	50	1	8	Erect Beams floor 10-11	3 days	Thu 1/13/11	Sat 1/15/11
N No. Place Deck Topo Place Deck Topo West U15V11 The U15V11 The U15V11 31 5 Sear Study form 2 days Pri 1/22/11 Sea U22/11 34 5 Sear Study form 2 days Pri 1/22/11 Sea U22/11 36 5 Sear Study form 5 days Mon U22/11 Weit U28/11 37 5 Sear Study form 5 days Mon U22/11 Mon U22/11 Mon U22/11 37 5 Bent Generation 5 days Mon U22/11 Weit U26/11 38 5 Bent Generation 5 days Mon U22/11 Weit U26/11 39 5 Bent Generation 5 days Mon U22/11 Weit U26/11 30 5 Bent Generation 5 days Mon U22/11 Mon U2/11 313 313 Study Stud	51	1	8	Brect Braces up to floor 11	2 days	Mon 1/17/11	Tue 1/18/11
100000 100000 200000 Ph1/22/11 Set 12/2/11 101 100000 100000 100000 100000 Ph1/22/11 West 12/2/11 101 100000 100000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 100000000 1000000000 100000000000000 1000000000000000000000000000000000000	52	-	5	Place Deck floor	2 days	Wed 1/19/11	Thu 1/20/11
19-11 19-11 19-14 19-14 19-14 19-14 19-14 19-14 19-14 19-14 19-14 19-14 19-14 19-14 10-14 <th< td=""><td>53</td><td></td><td>8</td><td>10-11 Shear Studs floor</td><td>2 days</td><td>Fri 1/21/11</td><td>SM 1/22/11</td></th<>	53		8	10-11 Shear Studs floor	2 days	Fri 1/21/11	SM 1/22/11
Initial Initial <t< td=""><td>54</td><td>,</td><td>8</td><td>10-11 Place Concrete floor</td><td>3 days</td><td>Mon 1/24/11</td><td>Wed 1/26/11</td></t<>	54	,	8	10-11 Place Concrete floor	3 days	Mon 1/24/11	Wed 1/26/11
Processing Starty & Starty	-		-	10-11	1.40	Montena	Adap 2 da ada
96 76 DetCOMPNE 2 Server Ph1/22/21 Ser/22/21 97 1 DetCBeness flow 2 Server Mon1/24/21 Wee12/34/21 98 1 DetCBeness flow 2 Server Mon1/24/21 Wee12/34/21 99 2 DetCBeness flow 2 Server Thu L/22/21 Pr1/22/21 99 2 Pice DetSinov 2 Server Server Server Server 90 2 Pice DetSinov 2 Server Server Server Server 91 3 Server Stormsort 2 Server Thu Z/2/21 Mon1/24/21 Mon2/2/21 91 3 Server Stormsort Server Mon2/2/21 Mon1/24/21 Mon2/24/21 91 Server Stormsort Server Mon2/24/21 Mon1/24/21 Mon2/24/21 92 Server Stormsort Server Thu 22/2/21 Mon2/24/21 Mon2/24/21 93 Server Stormsort Server Thu 22/2/21 Mon2/24/21 Mon2/24/21 94 <			9	floor 8-9	1.044	with 1/17/11	won 1/17/11
97 Inertisementsor Sayst Man (J4Q1) Wes1/24Q11 193 Bertfärensen br. Sayst Thu (J27)11 Fri (J4Q1) 193 Bertfärensen br. Sayst Thu (J27)11 Fri (J4Q1) 194 Bertfärensen br. Sayst Sut (J28)11 Mon (J1)11 195 Bertfärensen br. Sayst Sut (J28)11 Mon (J1)11 196 Bertfärensen br. Sayst Sut (J28)11 Mon (J1)11 197 Bertfärensen br. Sayst Sut (J28)11 Mon (J1)11 197 Bertfärensen br. Sayst Sut (J28)11 Mon (J20)1 Mon (J20)1 198 Bertfärensen br. Sayst Mon (J20)1 Mon (J20)1 Mon (J20)1 199 Bertfärensen br. Sayst Mon (J20)1 Mon (J20)1 Mon (J20)1 199 Bertfärensbr. Sayst Tu (J20)1 Mon (J20)1 Mon (J20)1 199 Bertfärensbr. Sayst Tu (J20)1 Mar (J20)1 Mar (J20)1	56	1	5	Erect Columns to level 13	2 days	Fri 1/21/11	58 1/22/11
90 50 Declarsame to for 13 64 we for 13 70 we for 13	57	1	2	Erect Beams floor 12-13	3 days	Mon 1/24/11	Wed 1/26/11
9 5 Marc Definition 2 days Set 1/2/11 Mon 1/2/11 0 5 36.9 50.9 70.9	58	1	3	Brect Braces up to floor 13	2 days	Thu 1/27/11	Fri 1/28/11
1 2 2 5 5 1 2 2 5 3 2 2 5 3 2 5 3 2 5 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3	59	1	5	Place Deck floor	2 days	5ət 1/29/11	Mon 1/31/11
13-13 3 61 3 Max Concerte filter 3 fauys The 2/1/11 Sat 2/5/11 42 3 Serve filterenerging 1 daw Mon 1/24/11 Mon 1/24/11 68 5 Berec Contents to 2 daws Tue 2/1/11 Weet 2/2/11 69 5 Berec Contents to 2 daws Tue 2/1/11 Weet 2/2/11 64 5 Berect Sense floor 3 days Tue 2/1/11 Sat 2/5/11	60	-,		12-13 Shear Studs floor	2 days	Tue 2/1/11	Wed 2/2/11
Image: Second	61			12-13 Place Common	2 direct	Thu School	54 28/21
Scrap Pressoring 1.6W Mon 1/24/11 Mon 1/24/11 60 Dest Columns to 2.6wy Tute 21/1.1 Wed 2/2/1.1 64 Dest Columns to 2.6wy Tute 21/1.1 Wed 2/2/1.1 64 Dest Columns to 2.6wy Tute 21/1.1 Scrap 1.6wd 64 Dest Columns to 2.6wy Tute 21/1.1 Scrap 1.6wd			4	12-13	5 wdy1	inu di sett	5m x/2/11
63 Erect Columns to text 15 2 days Tue 2/L/11 Wed 2/2/L1 64 Image: Dect Beams floor 14:15 3 days Thu 2/3/L1 Sat 2/5/L1	62		4	Spray Fireproofing floor 10-11	1 dw	Mon 1/24/11	1 Mon 1/24/11
64 Bret Brams floor 3 days Thu 2/3/11 Sat 2/5/11 14-15	63	1	9	Erect Columns to level 15	2 days	Tue 2/1/11	Wed 2/2/11
	64		8	Brect Beams floor 14-15	3 days	Thu 2/3/11	5at 2/5/11

Figure 29 - New Schedule Using Steel

Using RS Means, a detailed cost estimate was also done to compare the two structures. Information on the members, crews, decking, fireproofing, and concrete were put into an excel sheet. For steel members, the default equipment was a 90 ton lattice boom crane which would be insufficient for this project. Information for a tower crane was found and prices were adjusted to reflect this change. Next, takeoffs were taken using Ram including length and weight. For sizes that RS Means didn't have, values were interpolated. The final steps were multiplying the prices by the lengths for each element. RS Means said to estimate the price of connections, it is permitted to take 10% of the weight of steel as a rule of thumb estimate, which was incorporated in the calculations. Column splices were also taken into account by estimating 500 lbs of steel for each splice. A copy of the spreadsheet used to calculate these numbers can be found in appendix G. The original concrete structure cost \$5.75 million, and the new system cost approximately \$4.367 million. A savings of \$1.38 million was achieved by switching to a composite steel design. Since the final height of the new structure was within three feet of the original, the additional cost of the façade was considered negligible. Moving the structure to San Francisco resulted in some heavier members, particularly in the columns. The largest difference in cost of the move would be seen in the connections. Due to the dual system and seismic design category D, the moment connections would need to be capable of resisting 25% of the lateral loads. San Francisco would also be more willing to weld the connections which would results in a slightly longer schedule and higher costs. Another source of cost increase that wasn't estimated in this report is the connections between the diaphragm and lateral members. According to ASCE, a torsionally irregular building in seismic design category D must have the forces on those connections increased by 20%. A more detailed analysis of connections would need to be done in order to truly say the steel system is cheaper.

Architecture –

When designing the structure, the architecture was kept in mind throughout the process. Columns were added along walls or moved to an area that could minimize the impact of the functionality and aesthetics of the space. Due to the number of frames, not all areas could be preserved perfectly and this study focused on two spaces, the lounge and fitness area. Located on the 9th floor near the edge of the building as indicated in figure 30, frames were being designed to cut through the middle of open floor plans as indicated in blue. A Revit model was made of the areas as they were currently designed, and then another model was made indicating the changes so they could be compared.

Figure 30 - Floor Plan With Planned Frame Location

Starting with the fitness room, the original design calls for one large open room with cardio equipment along the windows, and weight machines along the walls. The lounge was designed to allow for plenty of seating space, access to the green roof, and a place to relax. Figures 31, 32, and 33 show the models to gain a visual representation of the space.

Brad Oliver - Structural Advisor: Prof. Memari

Figure 31 - Plan View of Existing

Figure 32 - Rendering of Fitness Room

Figure 33 - Rendering of Lounge

Placing the new frames as designed caused issues in both rooms. To address the issues at hand it was decided to expand the size of the fitness room to reach column line 10. This would allow for best flow of people in both spaces. A large opening was cut into the wall of the fitness room to make it appear open, but two separate distinct spaces. These spaces could be better utilized by converting one into a cardio room with the other being a weight room. This distinction of spaces along with additional wall space ended creating room for more equipment. The lounge ended up getting the short end of the stick however. One set of table and chairs were removed in order to prevent the space from becoming cluttered. Once the table was removed, the space has a similar feel as it did before, just with four less seats. This was deemed an acceptable tradeoff in order to keep the frames as designed. Figures 34, 35, 36, and 37 show what these spaces look like after the modifications.

Figure 34 - Plan of New Layout

Figure 35 - View 1 Cardio Room from Weight Room

Figure 36 - View of Weight Room from Cardio Room

Figure 37 - View of New Smaller Lounge

Conclusion –

Eccentrically braced frames were successfully designed at the Baltimore and San Francisco locations. Due to the high wind loads in the East-West direction, the design was primarily driven by serviceability requirements. Using C-Braces in the design resulted in deflections of 27 inches. The design ended up utilizing W14X43 braces and W14X48 beams for the link elements. The overall building height was kept within three feet of the original structure, which was a design goal so that the wind loads and façade cost would be comparable. Once the structure was moved to San Francisco, the structure was found to be torsionally irregular. This report didn't involve the design of connections, but this means when they are designed, the forces must be increased by 20%, resulting in a significant cost increase.

Without the detailed connection cost and using the 10% weight estimate, the building was estimated to cost approximately \$4.37 million. This results in a saving of \$1.38 million. A schedule was also created using RS Means as a guide as well as takeoffs. When the new schedule was compared to the original schedule, there was a time savings of over two months. When analyzed closely, most of the time was made up during winter when steel could be erected, but concrete could not be casted.

Throughout the entire design process the architecture was kept in mind. Columns were placed near walls or moved to locations where the impact would be negligible. The public lounge and fitness rooms were chosen to be studied more closely because the re-design called for braced frames running through the middle of both rooms. A Revit model was made of both rooms for the existing rooms and rendered. Once the new frames were in place, the fitness room dimensions were increased and separated into two rooms. The lounge was decreased in size, but maintained its functionality. A model and renderings were also created of the new design.

Appendix A – Existing Drawings

Appendix B – Composite Steel Beams Calculations

	Brad	Oliver	Final Report	Gravity Loads	(2)						
	Tr.	WIDXIA VIL	42=3.5 65 050 MOTIO	n. ILB 305 in 7291 in4							
			OMn= 182 K > 136 K	2511							
			Verify Assumption - a=	12= 41-120/2 = 3.52 > 3.5 .7	0/4						
	•		ZQ = 2481 Kips strangth for studios	surving Work position,"	17.2K -						
			2451 /17.2=16	3 = 345 stude/ beam 7:	25 No Good .						
			2 studs/rib str	ersth-14.6K							
	281/14.6 = 19.2=>40 stude/bean 650 OK. Try Wlox26 with yz=3.5 ILB= 334 in >291 in										
	$\frac{\partial M_{h}}{\partial x_{h}} = \frac{195' k}{136' k} = \frac{190}{85(5)(75)} = .594$ $\frac{y_{2}}{2} = 4 - \frac{.594}{2} = 3.773.5$										
	EQ1= 190 K Stude- 190/17.2 = 11 D4 => 24 Studes/beau										
\sim		Weight comp	Drivons- 10x22 1/32 stud	15 - 22(25) + 32(10) = 870 lbs	A ·						
	10×19 1/40 study 19(25) + 40(10) = 875 /bs										
			10×26 1/24 st	105 26(25) + 24(10) = 890 br							
	Chee	ok Bean Sar Unshon	a strangth - DLonly 1. Lenst loods	$H(H_{0,8}) + 1, H(22) = H_{74} = H_{74}$ 1. 2(H_0,8) + 1.2(22) + 1.6(20)	Ft (8) = 666 16/5478						
			Mu= . 660(2	5)/8= 52'12							
			OMIN OF I	Seam - 11.3 K JAK							
	Chi	ede Wet concrete det	lection scruice locals 3 Ibea	2118 14							
			Auc= 5(1334)(254)(14 384 (29000)	178) = .857'							
	T.	· ·	DANGUE - 4240 = 25.15	2/246 = 1.25" 7.859"							
	. 101	al load det ection inc	$A = \frac{5(1.20c)}{384(24c)}$	25")(1728) = 1.2" \$ 1.25" Allova	ye /						
0											
Tops											

Final Report Gravity System (A) Brad Oliver Service looder P= 334(25) = W= .026 14/54 I=144 in" check Wet concrete deflection A= 84 (163) (1728) + 5(.026) (164) (1728) =, 31 ×.8" / 48 (29000) (144) 384 (29000) (144) check Total load A V/sele weight A (214).200)(16 × (1728) + 5 (.020)(16 × (1728) = .49" × .5" V +8(2900)(213) + 38+(2900)(213) = .49" × .5" V Typical Bay Tall Towice - Exterior 25 Loads in exterior LL-HOPSE residential 15 pst - Partitions. 24' Dh. Hops conc & deck 8 pose SDL SELF Weight T Total hered - 103 psf . 8'= . 824 K/A An - 5(.824)(254)1728 >1.25" I>200 14 A ALL -5(055-8)254(1728) 7,833 I7 160in" Wo= 1.2(49) + 1.6(55) = 146psf: 8 = 1.168 K/f. Mo= 1.169(23)/8 = 91/K Try VIOX 15 Assuming y= 3,5 . ILB= 218 in" AM1=133'K Mu=91+1.2(.00)20= 92'K ≤133'K Verify Assumption $a = \frac{194}{85(5)(75)} = .6$ $y_2 = 4 - \frac{6}{2} = 3.7 \frac{73.5}{7}$ Stud strengt - 17,2 K 194/14.2= 11.2=224 studs/bean <25 V Assunios y=3.5 ILB= 219'11 A OMOS 133'K > 92'K Try WIOXIT Veiry Assum a= 150/,85(3)(-3) = .47 yz= 4-.47/2= 3.76" >3.5" v Studs- 150/17.2=8.7 => 18 studs/boam <25 Assuming y=3.5 Ing=2231," TH WICKA Mn= 131'K 7 92'K√ Q= 122/85(5)+.382 ~ y=3.8 73.5 √ stute - 122/17,2=7.1 = 16 stude / tran 625/ TOPS

Appendix C – Preliminary Column Design

	Bal Aliver	End Ropart	Col design D							
	COlumns Vill be spiced	@ every 2 floors for	an expedited schedule							
$\overline{\mathbf{O}}$										
	* negate the use of fall protection also being more expromise									
	Typical exterior corner cr	olumn = indicate cr	sluma splice							
	CUT 2007	Au= 2(205') × 2(2	H')= 123 ft ²							
		Td = 8psf(SOL) + 40 psf = 52(55 psr x 1	(cone deax)+2.125psf(beams)+2.3-psf(5:rack) 23fi=6476.6. 165							
	20 + {5	PL= HOASE (resid)+	15 ASS (portitions) = 55 pur							
	ia =	= 55 psf x 1:	23-A2-6765 lbs							
	Po typical floor = 1.2(6476.6) + 1.6(6765)									
	18 - 7 7	-1	0.0 1-12							
	IT I	@foos Pa= 6471	1.6 br							
		PL= 30psf	$(122 \text{ G}^2) = 3690 \text{ Hz}$							
	16 + 24	P= 12/6476	(125+) - 1968 bs (125+) - 1968 bs							
	15 =	= 14.7 Kips								
	14 + 6	Pu e base = 368,	L Kips							
		All colonna A-	5 vill be wex 40							
			40(10')(20flrs) 1,2= 7.6K							
\cap	12 - 21	Including sett	- CIM TO - 511.1							
	1 = -	$\phi P_n = 39$	4K7377K							
		Ne i me proller	the Valla & welles							
	10 - 5	hour this vebs & fl	specs & con create							
-	a =	expensive connectio	ns referenced by Charlie							
		Corter on Modern	Steel.							
	18 + (P									
	7 7	OP. is based as	L 10' length.							
	1 c t čc									
	5 =									
	. B									
	4 + (
	3=1									
	$2 + \langle \cdot \rangle$									
-	6-1-									
TOPS.										

	Brad	Oliver	Final Report	~	(o) design	2
		interior e	column along	exterior M	ailí.	
0				Ati 25' P1=52. = 15	× 1/2(24') = 300 655 psf (300f) , 796.5 b,	s - F4 ² ?)
				PL = 55 ps	r(3005)= 16,5	oo lbs
	1005 -	PJ= 82K W/12 J- VLSUG W OPn= PJ= 83K	×40 397K	Pu typical Puroof = 1	Sloor = 1.2(15,79 = 45.4 Kip 2 (16,500)+ 1.6(3	6.5)+1.6(16.500) 21 0·300)+.5(16·300)
	19 -	I PJ=173.8 VI- = 174.71K//sec ve	2X40 07,=397 K		Die, 6 Kips	
	16 -	(H Pu=265.2 K = 266.5 K V/s.	WIZX40 D	R=397K		
\bigcirc	14 -	6 Po=357.3K = 358.2K	W12X40 di W/self	PA = 3971K		
	12 -	F PJ=4491K = 450 K 1/3	W 12×50	0P-1199K		
	10 - 9 -	E P.= 5411K = 5431KY	W12X53 Iself	672=590K		
	8 .	P P = 634K = 635.4K	W 12 × 58	OR-CHAK		
	6 5	L 20-726.2K =727.8K	WIZX 65 Vlseff weight	ØP2=765K		All de re
	M M	B PJ= 818.6 K = 820.3 K W	WIZX72 Iself Wight	C) PA= 849K	P. M.	need on 10' height
	2 -	A- tosenin k	VS WIZX 7 VIsclf	9 Otr= 4	52 14	
Tops.		•				

Final Report

Brad Oliver - Structural Advisor: Prof. Memari

Appendix D – EBF Checks at Baltimore

Bad Alver Find Report Prand Four checks (5)
Check Stations requirement
Sec 15.30 requirement
Sec 15.30 requirement
And req. Width - When
$$\frac{1}{2} + \frac{1}{2} + \frac{1$$

	Brad (Dhiver	Final	Report	Braced	Frame Check	6)
0	Design of	Bean Outside lin Beam mus & forces ge of the liv	nk element of be ce nerated s K. I.I.R.g	public of holding times 1.1 the estimates $N_p = 1.1(1.1)(128.6)$	factorec cpected)= 156 K	d gravity loads sheer strength	
		, Axial tole	Pen Pen	$\frac{1}{2h} = \frac{156}{20}$ $\frac{1}{2h} = \frac{156}{20}$ $\frac{1}{20}$ $\frac{1}{20}$	$\frac{12}{12} \frac{1}{24'} = 133$	27K 2133.7K	
	Met	Salisfaces within for rotation R	= . 08 ra.	K-spicing 1 30tw-db.	= 30(,34).	- 12.8/5	
		for relation <	: e.02 rod	52 tu - d/5 =	= 7.44" 50(.34)- 14.24"	13.8/5-	
		Actua	l retartion-	.cH rad			-
0		inter	prolation	7.44" .0 X .0 14.24" .0	08 rod 14 rod 2 rod		
				(14.24-7,44) X-7.44	- (.020	(8) => (x = 12" sp	acity
	Second O	only	recon	I side of web ble Some thickness t	tinic d = width as f	< 25" Dreviausly calcolated	
		eletermine unbraced $L_b = L_{-e}$	length-i	t is break @ end = 24'(12) - 20 - 2(1)	of link e = $127"$	kment = 10'7"	
		$B = \frac{Cm}{1-\frac{\alpha Pr}{Pu}} \ge 1$	L Dz=! Cm=	ble end points assi I to be conscribilize	umed not to	o translate	
		Par	TET =	$\frac{\int_{1}^{2} (24000) (H8H)}{(1(124))^{2}} = $	8589 K		
		Mrx=BMNT	- 1-(1.0181 + B2MLT	a) = 1.01			
	1	= 1.01(Using combined to	145.68) = bd'ns table	147 K' E - UBL=11' conserverive	- p= 2,230	= 5,4e3	

Final Report Brad Oliver Braced France Check 5 $\frac{P_{c}}{P_{c}} = PR = 4.58e^{-3}(157) = .72$ $(8/a)(\frac{M_{ry}}{M_{ee}}) = L_{x}M_{w} = 0$ sinaPrile >2 interaction 4= .72+0=.72 <1 V · Corresponds cloudy to RAM For col - Strong cal Weak Beam design to avoid pancaking MAR > MAR Fyz 50(1900) 73920 9500 73920 / TOPS

Appendix E – New Seismic Criteria

	Bail Aline	Faul Report	Fachanaka - San Fran
	$S = (207_{0}a = .60$	a popon	- Languare San (Con,
	5 = 15090 = 1.5	g Assume si	he class D-unknown
\frown	TL= 12 see		
	2 . E 3	F FELO SALIT	
	Jms = 1a =	s tarino , j rije noe	
	Smi = tys	S_1 tuelos a . $Smi=,($	og(1.5)=.9g
	$S_{ds} = \frac{2}{3} S_{ds}$	$im_s = \frac{2}{3}(1.5g) = 1g$	
	$S_{DI} = T_{S}$	$Sm_1 = f(3(.9g) = .6g$	
	Based an	occupping category 11 & Sds 7, # Sdi 7.	5 Seismic Dasign Category D 2
	$V = C_{z} W$		
	(z = 2	248/R/I = 1/8/1 = .125 7.	01/27,0375
	Cy	= 1,4	
	Tael	$C_{q}h_{r}^{x} = .03(201)^{13} = 1.6$	M upper livin for Taliful Light = 2,29 sec.
0	Ls 2 - 5	(<u>2</u>) = <u>(</u> <u>6</u>) = <u>(</u> <u>0</u>) <u>-</u> <u>(</u> <u>0</u>) <u>-</u> <u>2</u> ,29(8)	
	4	$\frac{1}{T^2} \left(\frac{R}{2} \right) = \frac{1}{2.2\hat{q}} \left(\frac{12}{3} \right) = \frac{1716}{1716}$	
	4 7 5	5, = 5(4) = ,0375 5	R controls
		K= 1.9 through interpolarin	4.
\frown			
Tops . 35502			

Appendix F – EBF Checks at San Francisco

Build Oliver Final Report Bare Some Some Fam (2)
Check hind Consister Arge

$$e = x M^{-1}M_{p}$$
 $H_{p}e^{-\frac{1}{2}} = \frac{1181(25)}{3210} = .652661.61.51.51 here carross$
 $Y = E Sp = 0.00 hr Ar/h = .00161/1012 = .00266 ad
 $Y_{p} = \frac{55/m}{20} (102060) = .041 mid. R. 057041 / ...
NU2X455 is a chequiter
Lotreal Brand Requester End to that has a baread. Sr. (Allowing, force
 $R_{u+..06} R_{u}F_{u}S^{-1}S^{-1}(300) = ...(11)(50)(641.3)/(10.11-570)$
 $= 1844 K/m$
Shittere requirements
White $\frac{1}{2} + \frac{1}{2} +$$$

Appendix G – Construction Management Calculations

		6										D. 11
	05 12 23.17 Columns, Structural	Crew	Daily Output	Labor-Hours	Unit	Material	Labor	Equipment	Total	Crew E2	Hr.	Daily
										1 Struc Foreman	50.55	404.4
7000	W10x45	E2	1032	0.054	L.F.	55.5	2.57	1.57	59.64	4 Steel workers	48.55	1533.6
7050	W10x68	E2	984	0.057	L.F.	84	2.7	1.65	88.35	1 Equip Oper. (Crane)	46.5	372
7100	W10x112	E2	960	0.058	L.F.	139	2.76	1.69	143.45	1 Equip Oper. Oiler	10.3	322.4
7150	W12x50	E2	1032	0.054	L.F.	62	2.57	1.57	66.14	1 Lattice Boom Crane, 90 Ton		1622
	W12X53	E2	1028	0.054	L.F.	66	2.58	1.58	70.16	56 Labor Hour Daily Total		4254.4
	W12X58	E2	1022	0.055	L.F.	72	2.6	1.59	76.19			
	W12X65	E2	1013	0.055	L.F.	81	2.62	1.6	85.22	Crew A-3N		
	W12X72	F2	100	0.056	LE	89	2 65	1.62	93 27	1 Equip Oper (Crane)	46.5	372
	W12X70	E2	00/	0.056	1 6	09	2.00	1.62	102.2	1 Tower Crane (monthly)	10.5	097.2
7200	W12X75	E2	33-	0.050		109	2.07	1.03	112.5	Pl H Deily Tetal		1250.2
7200	W12X87	E2	964	0.037	L.F.	100	2.7	1.05	112.55	8 L.H. Dally Total		1559.2
	W12X96	E2	977	0.057	L.F.	119	2.72	1.67	123.39			
	W12X106	E2	970	0.058	L.F.	132	2.73	1.68	136.41	Crew G-2		
7250	W12X120	E2	960	0.058	L.F.	149	2.76	1.69	153.45	1 Plasterer	39.4	315.2
	W12X136	E2	949	0.059	L.F.	169	2.79	1.71	173.5	1 Plasterer Helper	35.05	280.4
	W12X152	E2	938	0.06	L.F.	188	2.83	1.73	192.56	1 Building Laborer	34.35	274.8
7300	W12x190	F2	912	0.061	L.F.	235	2.91	1.78	239.69	1 Grout Pump, 50 C.E./hour		125.8
7350	W14x74	F2	08/	0.057	LE	91.5	2.7	1.65	95.85	241 H. Daily Total	-	996.2
7550	W14X92	C2	000	0.057		101.5	2.7	1.05	105.00	24 E.H. Daily fotal		550.2
	W14A62	C2	960	0.037	L.F.	101.5	2.71	1.00	105.67			
	W14X90	E2	976	0.057	L.F.	111.5	2.72	1.66	115.88	Crew C-20		
	W14X99	E2	971	. 0.058	L.F.	123	2.73	1.67	127.4	1 Labor Foreman	36.35	290.8
	W14X109	E2	966	0.058	L.F.	135	2.75	1.68	139.43	5 Laborers	34.35	1374
7400	W14x120	E2	960	0.058	L.F.	149	2.76	1.69	153.45	1 Cement Finisher	40.85	326.8
	W14X132	E2	950	0.059	L.F.	164	2.79	1.71	168.5	1 Equip. Oper. (med.)	45.35	362.8
	W14X159	E2	927	0.06	L.F.	197	2.86	1.75	201.61	2 Gas Engine Vibrators		46.4
7/150	W14x176	F2	011	0.061	LE	210	2 01	1 70	222 60	1 Concrete Pump (small)		7/1
0000	For Projects 75-99 tons add		512	0.001	LE	1/0/	2.31	1.70	222.05	641 H. Dolly totals		21/11 0
0090	For Projects 75-99 tons, add				L.F.	10%				64 L.H. Daily totals		5141.6
8092	For Projects 50-74 tons, add				L.F.	20%						
8094	For Projects 24-49 tons, add				L.F.	30%	10%					
8096	For Projects 10-24 tons, add				L.F.	50%	25%					
8098	For Projects 2-9 tons, add					75%	50%					
8099	For Projects < 2 tons, add					100%	100%					
									Î			
01 5	0 19 60 Monthly Tower Crane Crew											
Static Tow	ver Crane - 6200 lb Canacity	4-3N	0.05	176	Month		8 175	21700	20875			
Static Tow	ver crane uzoons capacity	A 514	0.0.	170	WORth		0,175	21700	25075			
05	42.22.75 Characterial Characteria											
05	12 23.75 Structural Steel Members											
702	W10x22	E2	600	0.093	L.F.	27	4.42	2.7	34.12			
	W10X30	E2	585	0.096	L.F.	37	4.55	2.78	44.33			
	W10X33	E2	580	0.097	L.F.	41	4.6	2.8	48.4			
902	W10X39	E2	569	0.099	L.F.	48	4.7	2.86	55.56			
1102	W10x49	E2	550	0.102	L.F.	60.5	4.82	2.95	68.27			
	W12x16	F2	880	0.064	L.F.	19.8	3.01	1.84	24.65			
1302	W12X19	F2	880	0.064	LE	23.4	3.01	1.8/	28.25			
1502	W12x12	52	000	0.004		25.4	2.01	1.04	20.25			
1502	W12X22	EZ	880	0.064	L.F.	2/	3.01	1.84	31.85			
	W12x26	E2	880	0.064	L.F.	32	3.01	1.84	36.85			
	W12X30	E2	855	0.066	L.F.	37	3.11	1.9	42.01			
	W12X35	E2	833	0.069	L.F.	43	3.23	1.98	48.21			
1702	W12X45	E2	781	0.074	L.F.	56	3.48	2.13	61.61			
1902	W12x72	E2	640	0.088	L.F.	89	4.14	2.53	95.67			
2102	W14x26	E2	99(0,057	L.F.	32	2.68	1,64	36.32			
2302	W14x30	F2	000	0.062	L.E.	27	2 95	1.8	41 75			
2502	W14x34	F2	01/	0.002		47	2.55	1.0	12.75			
	W/1 AV AD	L2	810	0.009	L.F.	42	5.27	2 2 02	4/.2/			
	VV 14A43	EZ	800	0.069	L.F.	53	3.32	2.02	58.34			
	W14X48	E2	795	0.07	L.F.	59	3.34	2.04	64.38			
2502	W14x120	E2	720	0.078	L.F.	149	3.68	2.25	154.93			
8490	75-99 tons, add				L.F.	10%						
8492	50-74 tons, add				L.F.	20%						
8494	25-49 tons, add				L.F.	30%	10%					
8496	10-24 tons, add				L.F.	50%	25%		ļ			
3 50 Eloor	Decking											
E200	2" Doop 22 gauge composite	E 4	2000	0.000	сE	1.35	0.44	0.02	1 70			
5200	2 Deep, 22 gauge, composite	E-4	3860	0.008	3.F.	1.35	0.41	0.03	1.79			
Sprayed F	ireproofing											
400	Beams	G-2	1500	0.016	S.F.	0.53	0.58	0.08	1.19			
800	Columns	G-2	700	0.034	S.F.	1.13	1.24	0.18	2.55			
ormal We	ight Concrete											
400	5000 psi				C.Y.	111			111			
						1 11						
70 Dia -!	Concrete											
70 Placing	Concrete	0.00			C V							
1400	Elevato Slabs < 6" thick, pumped	C-20	140	0.457	L.Y.		16.8	5.6	22.4			
3500	High Rise, more than 5 stories, add/floor	C-20	2100	0.03	C.Y.	1	1.12	0.37	1.49			
			Take	offs								
--	-------------	-------------	-----------------	-----------------	-----------	------------	--------------					
	Tall Towe	r			Short Tow	er						
Gravity Beams	Quanity	Length (ft)	Weight (lbs)	Gravity Beams	Quanity	Length (ft	Weight (lbs)					
W8X10	161	2643	26621	W8X10	282	4336.67	43680					
W10X12	122	2351.83	28330	W10X12	58	1000.67	12054					
W12X14	360	8174 5	115715	W12X14	88	1849	26174					
W12X16	370	525	136631	W12X16	30	745	11940					
W12X10	212	77/6 22	1/6820	W12X10	16	297 67	72/19					
W12A19	512	7740.55	140620 52529	W12X19	10	1244	24096					
W14X22	96	2379	52538	VV12X20	50	1344	34986					
W14X26	21	484	12665	W12X22	6	149	3285					
W14X30	/8	1853	55802	W12X30	8	192	5/43					
Studs	19949			W12X45	2	48	2140					
Total		26156.66	575122	W12X35	14	336	11776					
				Studs	6111							
Gravity Columns	Quanity	Length (ft)	Weight (lbs)	Total		10388.01	159126					
W12X40	73	1482	59002									
W12X45	6	128	5706	Gravity Columns	Quanity	Length (ft	Weight (lbs)					
W12X50	6	120	5962	W12X40	71	1524	60674					
W12X53	10	214	11360	W12X50	1	24	1192					
W12X58	6	128	7404	Total		1548	61866					
W12X65	6	120	20-50 2050	10101		1340	01000					
W12X03		153	10012	Lateral Pears	Quanity	Longth (ft	Woight (lbc)					
VV12X72	/	152	10915		Quanty							
W12X79	2	40	3158	W8X10	/	109.7	1105					
W12X87	2	48	4181	W10X12	1	15.7	189					
W12X96	2	48	4606	W10X39	14	336	13148					
Total		2484	120351	W10X22	7	173.8	3839					
				W12X14	7	168	2378					
Lateral Beams	Quanity	Length (ft)	Weight (lbs)	W12X19	1	24	455					
W14X48	220	5093.3	244370	W14X22	1	24.8	548					
Total			244370	W16X26	2	48	1254					
				Total		900	22916					
Lateral Braces	Quanity	Length (ft)	Weight (lbs)									
W14X43	440	6587.1	282638	Lateral Braces	Quanity	Length (ft	Weight (lbs)					
Total			282638	W/10X33	4	71.6	2367					
TULAI			202030	W10X30	76	1135.3	3/150					
Latoral Columns	Quanity	Longth (ft)	Woight (lbc)	Total	/0	1155.5	26517					
	Quality 103	1027	4120F				50517					
VV12X40	102	1037	41265		a							
W12X45	8	80	3566	Lateral Columns	Quanity	Length (ft	weight (lbs)					
W12X53	20	206	10935	W12X40	/4	/80	31053					
W12X65	28	288	18718	W12X45	4	56	2496					
W12X58	16	162	9371	W12X50	2	24	1192					
W12X50	22	220	10930	Total		860	34741					
W12X72	12	120	8616									
W12X79	18	192	15157									
W12X87	14	150	13066									
W12X96	18	196	18808									
W12X106	8	80	8493									
W12X120	14	148	17777									
W12X136	24	240	3758									
W12X130	2	24	0647									
VV 14/143	22	225	5047									
VV12A152	8	96	14002									
VV14X48	8	80	3838									
W14X61	10	100	6091									
W14X68	12	120	8167									
W14X90	14	150	13526									
W14X74	2	20	1484									
W14X99	8	80	7922									
W14X1091	4	40	4355				D 72					
W14X82	10	102	8330				rage /3					
W14X120	10	104	12492									
W14X132	8	96	12674									
1.	2	30	2014									

Beams	Duration	Cost	\$/lb of steel	Total Weight
W8X10	11.81561667	241889.3044	1.77072695	1824569
W10X12	5.613666667	114922.984		
W10X22	0.289666667	5930.056		
W10X39	0.590509666	18668.16		
W12X14	11.58125	251220.475		
W12V16	1 442101010	21205 5		
W12X10	0.270454545	220462 5		
W12X19	9.270454545	230403.5		
W14X22	2.4/656565/	89049.376		
W14X26	0.488888889	1/5/8.88		
W14X30	2.058888889	//362.75		
W12X26	1.527272727	49526.4		
W12X22	0.169318182	4745.65		
W12X30	0.223515716	8065.92		
W12X45	0.061459667	2957.28		
W12X35	0.403361345	16198.56		
W14X48	6.406666667	327906.654		
Columns	Duration	Cost		
W12X40	4.673449612	318993.22		
W12X45	0.255813953	17460.96		
W12X53	0.406976744	27778.8		
W12X65	0.406712734	59796.3174		
W12X58	0.283757339	22095.1		
W12X50	0.375968992	25662.32		
W12X72	0 271186441	25369 44		
W12X79	0 233400402	23733.6		
W12X75	0.201210512	23735.0		
W12X87	0.201213312	20107 16		
W12X30	0.092474227	10012.9		
W12X100	0.082474227	10912.0		
W12X120	0.154166667	22/10.6		
W12X136	0.025289779	4164		
W12X152	0.102345416	18485.76		
W14X43	0.228658537	21566.25		
W14X48	0.081300813	7668		
W14X61	0.101626016	9585		
W14X68	0.12195122	11502		
W14X74	0.020325203	1917		
W14X90	0.153688525	17382		
W14X99	0.081967213	10192		
W14X109	0.041407867	5577.2		
W14X82	0.104081633	10798.74		
W14X120	0.108333333	15958.8		
W14X132	0.101052632	16176		
W14X159	0.025889968	4838.64		
Braces	Duration	Cost		
W10X30	1.940683761	50327.849		
W10X33	0.123448276	3465.44		
W14X43	8.233875	384291.414		
Decking	Duration	Cost		
2" VII	71 53608808	494271 447		
	1100000000	15 127 21117		
Splices	Duration	Cost		
Sprices	Duration	220255 2124		
Connections	Duration	523555.2124		
connections	Duration	222001 2400		
6	Duration	323081.3498		
Concrete	Duration	Cost		
	18.26251984	283799.5583		
Fireproofing	Duration	Cost		
Beams	ļ	159716.72		
Columns		88287.8		
		\$4,367,065		

Appendix H – References

http://communities.bentley.com/products/structural/structural analysis design/w/structural analysis a nd_design_wiki/ram-frame-steel-seismic-provisions-tutorial.aspx

http://www.iitk.ac.in/nicee/wcee/article/7_vol7_127.pdf

http://www.nibs.org/client/assets/files/bssc/Chapter05.pdf

http://www.aisc.org/WorkArea/showcontent.aspx?id=17638

http://www.ipcsit.com/vol15/14-ICAME2011-D009.pdf

http://faculty.delhi.edu/hultendc/AECT250-Lecture%208.pdf

http://www.bing.com/maps/

Naeim, Farzad. The Seismic Design Handbook. New York: Van Nostrand Reinhold, 1989.